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ABSTRACT

Pulsar timing arrays (PTAs) measure nHz frequency gravitational waves (GWs) gen-
erated by orbiting massive black hole binaries (MBHBs) with periods between 0.1 – 10
yr. Previous studies on the nHz GW background assumed that the inspiral is purely
driven by GWs. However, torques generated by a gaseous disk can shrink the binary
much more efficiently than GW emission, reducing the number of binaries at these sep-
arations. We use simple disk models for the circumbinary gas and for the binary-disk
interaction to follow the orbital decay of MBHBs through physically distinct regions of
the disk, until GWs take over their evolution. We extract MBHB cosmological merger
rates from the Millennium simulation, generate Monte Carlo realizations of a popu-
lation of gas driven binaries, and calculate the corresponding GW amplitudes of the
most luminous individual binaries and the stochastic GW background. For stationary
α–disks with α > 0.1 we find that the nHz GW background can be significantly modi-
fied. The number of resolvable binaries is however not changed by the presence of gas;
we predict 1–10 individually resolvable sources to stand above the noise for a 1–50ns
timing precision. Gas driven migration reduces predominantly the number of small
total mass or unequal mass ratio binaries, which leads to the attenuation of the mean
stochastic GW–background, but increases the detection significance of individually
resolvable binaries.

Key words: black hole physics, gravitational waves – cosmology: theory – pulsars:
general

1 INTRODUCTION

Inspiraling massive black hole binaries (MBHBs) with
masses in the range ∼ 104 − 1010 M⊙ are expected to be the
dominant source of gravitational waves (GWs) at ∼ nHz
– mHz frequencies (Haehnelt 1994; Jaffe & Backer 2003;
Wyithe & Loeb 2003; Sesana et al. 2004, 2005). The fre-
quency band ∼ 10−5 Hz – 1Hz will be probed by the Laser

Interferometer Space Antenna (LISA, Bender et al. 1998),
a space-borne GW laser interferometer developed by ESA
and NASA. The observational window 10−9 Hz – 10−6 Hz,
corresponding roughly to orbital periods 0.03 – 30 yr, is al-
ready accessible using Pulsar Timing Arrays (PTAs; e.g.
the Parkes radio-telescope, Manchester 2008). The com-
plete Parkes PTA (PPTA, Manchester 2008), the Euro-
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pean Pulsar Timing Array (EPTA, Janssen et al. 2008), and
NanoGrav (Jenet et al. 2009) are expected to improve con-
siderably on the capabilities of these surveys, eventually
joining their efforts in the international PTA project (IPTA,
Hobbs et al. 2009); and the planned Square Kilometer Ar-
ray (SKA, Lazio 2009) will produce a major leap in sensi-
tivity.

Radio pulses generated by rotating neutron stars travel
through the Galactic interstellar medium and are detected
by radio telescopes on Earth. The arrival times of pulses
are fitted for a model including all the known and measured
systematic effects affecting the signal generation, propaga-
tion and detection (Edwards, Hobbs, & Manchester 2006).
Timing residuals between the observed pulses and the best
fit model, carry information on additional unmodelled ef-
fects, including the presence of GWs. Indeed, GWs mod-
ify the propagation of radio signals from the pulsar to the
Earth (Sazhin 1978; Detweiler 1979; Bertotti et al. 1983;
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2 B. Kocsis & A. Sesana

Hellings & Downs 1983; Jenet et al. 2005), and PTAs mea-
sure the direction dependent systematic variations in the
arrival times of signals from a sample of nearly stationary
pulsars in the Galaxy distributed over the sky.

PTAs provide a direct observational window onto the
MBH binary population, and can contribute to address a
number of open astrophysical questions, such as the shape
of the bright end of the MBH mass function, the nature of
the MBH-bulge relation at high masses, and the dynamical
evolution at sub-parsec scales of the most massive binaries
in the Universe (particularly relevant to the so-called “fi-
nal parsec problem”, Milosavljevic & Merritt 2003) PTAs
can detect gravitational radiation of two forms: (i) the
stochastic GW background produced by the incoherent su-
perposition of radiation from the whole cosmic population
of MBHBs and (ii) individual sources that are sufficiently
bright in GWs to outshine the background (typically mas-
sive, M∼>109 M⊙, and “cosmologically nearby”, dL∼<3Gpc).
Both classes of signals are of great interest, and PTAs could
lead to the discovery of systems difficult to detect with other
techniques (for alternatives using active galactic nuclei, see
Haiman, Kocsis, & Menou 2009, and references therein).

Popular scenarios of massive black hole (MBH) for-
mation and evolution (e.g. Volonteri, Haardt, & Madau
2003; Koushiappas & Zentner 2006; Malbon et al. 2007;
Yoo et al. 2007) predict frequent MBH mergers (up to sev-
eral hundreds per year), implying the existence of a large
number of sub-parsec MBHBs. The prospect for detecting
GW signals using PTAs depends on the number and cosmo-
logical distribution of MBHBs with orbital periods of 0.03 –
30 yr, or separations typically in the range 0.001−0.1 pc. The
three main ingredients for calculating the GW background
are

(i) the merger rate of MBHBs as a function of mass and
redshift,

(ii) the relative time each binary spends at these separa-
tions during a merger episode and

(iii) the amplitude of the GW signal produced by each
individual stationary system.

Recently Sesana, Vecchio, & Colacino (2008, SVC08
hereinafter) and Sesana, Vecchio, & Volonteri (2009,
SVV09 hereinafter), carried out a detailed study of the
expected signals (stochastic and individual), focusing on the
uncertainties related to (i). They found that the background
is affected by the galaxy merger rate evolution along the
cosmic history, the massive black hole mass function, and
the accretion history of the MBHB during a galaxy merger,
and they predict a factor of ∼ 10 uncertainty for the charac-
teristic strain amplitude in the range 2× 10−15 − 2× 10−16,
at f = 1/yr, within the expected detection capabilities of
the complete PPTA and of the SKA. They pointed out that
the GW signal can be separated into individually resolvable
sources and a stochastic background, and found the number
of individually resolvable sources for a 1ns timing precision
level to be between 5 to 15, depending on the considered
model.

In this paper, we examine for the first time how pre-
dictions relevant for PTA observations are modified by the
presence of ambient gas, affecting the inspiral rate of bi-
naries during a merger episode, ingredient (ii) above. A
gaseous envelope is expected to surround the binary be-

cause MBHBs are produced in galaxy mergers, which are
known to trigger inflows of large quantities of gas into
the central region, as shown by hydrodynamic simulations
(Springel et al. 2005). This gas, accreted onto the MBHs,
is responsible for luminous AGN activity, and is also ex-
pected to catalyze the coalescence of the new-formed MBH
pair (e.g., Escala et al. 2004; Dotti et al. 2007), as described
below. The forming MBHB spirals inward initially as a re-
sult of dynamical friction on dark matter, ambient stars,
and gas (Begelman, Blandford, & Rees 1980). As the bi-
nary separation shrinks to sub-pc scales, the supply rate of
stars crossing the orbit decreases, and the interaction with
stars becomes less and less efficient to shrink the binary.
In gas rich mergers, the dense nuclear gas is expected to
cool rapidly and settle into a geometrically-thin circumbi-
nary accretion disk (e.g., Barnes 2002; Escala et al. 2004).
Torques from the tidal field of the binary clear a gap in the
gas with a radius less than twice the separation of the bi-
nary, and generates a spiral density wave in the gaseous disk,
which in turn drains angular momentum away from the bi-
nary on a relatively short timescale within the last parsec,

∼<107 yr (Escala et al. 2005; Armitage & Natarajan 2002,
2005; Dotti et al. 2007, see however Lodato et al. 2009). Ul-
timately, at even smaller separations, corresponding to an
orbital timescale of ∼ years, the emission of GWs becomes
the dominant mechanism driving the binary to the final co-
alescence. The main point of this paper, is to notice that the
most sensitive PTA frequency band corresponds to orbital
separations near the transition between gas and GW dom-
inated evolution . As binaries shrink more quickly inwards

in the gas-driven phase, the number of binaries emitting at

each given separation is decreased compared to the purely

GW-driven case. The subject of this work is to explore how
various gas-driven models modify the expectations on the
GW signal potentially observable by PTAs.

Recently, Haiman, Kocsis, & Menou (2009, HKM09
hereafter), examined the evolution of MBHBs in the
gas–driven regime for simple models of geometrically
thin circumbinary disks (see also, Syer & Clarke 1995;
Armitage & Natarajan 2005). The interaction between the
binary and the gaseous disk is analogous to type-II plane-
tary migration, and evolves through two main phases. First,
the inspiral is analogous to the disk–dominated type-II mi-
gration of planetary dynamics, where the binary migrates
inwards with a radial velocity equal to that of the gas accret-
ing towards the center. Later, as the mass of the gas within a
few binary separations becomes less than the reduced mass
of the binary, the evolution slows down, and it is analogous
to the planet–dominated (or secondary–dominated) type-
II migration. In both cases, the radial inspiral rate is still
much faster than in the purely GW driven case at orbital
separations beyond a few hundred Schwarzschild radii. For
standard Shakura-Sunyaev α–disk models, the viscosity is
assumed to be proportional to the total pressure, and is
consequently very large in the radiation pressure dominated
phase at small radii, increasing the migration rate in the
radiation pressure dominated phase. On the other hand, for
β–disk models, where the viscosity is proportional to the
gas pressure only, the increase of radiation pressure does
not impact the viscous timescale, and the migration rate is
relatively slower in this regime. Finally, we note that the
binary-gas interaction is also significantly different for non–
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steady models of accretion (Ivanov, Papaloizou, & Polnarev
1999, HKM09). In the typical secondary–dominated phase,
gas flows in more quickly then how the binary separation
shrinks, and is repelled close to the outer edge of the gap
by the torques of the binary. This causes gas to accumulate
near the gap, and delays the merger of the binary relative
to the steady-state models.

In this paper, we couple the HKM09 models for the
migration of MBHBs in the presence of a steady gaseous
disk, to the population models derived in SVV09, and we
compute the effects on GWs at nHz frequencies. Here,
we restrict to nearly circular inspirals for simplicity, us-
ing the corresponding GW spectrum (ingredient–iii above).
This assumption might be violated in gas driven inspirals
(Armitage & Natarajan 2005; Cuadra et al. 2009), and is
the subject of a future paper (Sesana & Kocsis 2010, in
prep).

The paper is organized as follows. In Section 2 we in-
troduce the theory of the GW signal from a MBHB popula-
tion, describing its characterization in terms of its stochastic
level and of the statistics of individually resolvable sources.
In Section 3 we describe our MBHB population model, cou-
pling models of coalescing binaries derived by cosmological
N-body simulations to a scheme for the dynamical evolution
of the binaries in massive circumbinary disks. We present in
detail our results in Section 4, and in Section 5 we briefly
summarize our main findings. Throughout the paper we use
geometric units with G = c = 1.

2 DESCRIPTION OF THE GRAVITATIONAL

WAVE SIGNAL

The theory of the GW signal produced by the superposition
of radiation from a large number of individual sources, was
extensively presented in SVC08 and SVV09, here we review
the basic concepts, deriving the GW signal for gas driven
mergers.

The dimensionless characteristic amplitude of the GW
background produced by a population of binaries with a
range of masses m1 and m2 and redshifts z is given by
(Phinney 2001)

h2
c(f) =

4

πf2

∫

dzdm1dm2
∂3n

∂z∂m1∂m2

1

1 + z

dEgw

d ln fr
. (1)

where dEgw/d ln fr is the total emitted GW energy per log-
arithmic frequency interval in the comoving binary rest-
frame, fr = (1 + z)f is the rest-frame frequency, f is the
observed frequency, n is the comoving number density of
sources, and the 1/(1 + z) factor accounts for the redshift
of the observed GW energy. The characteristic GW ampli-
tude hc is related to the present day total energy in GWs as
ρGW = π

4

∫

fh2
c(f)df .

2.1 GW-driven inspirals

To the leading quadrupole order, for circular purely GW-
driven binaries orbiting far outside the innermost stable cir-
cular orbit (ISCO), Eq. (1) can be evaluated assuming that
Egw = Epot = −m1m2/a is equal to the Newtonian poten-
tial energy of the binary, and that fr is equal to twice the
Keplerian orbital frequency (Phinney 2001). In this case

dEgw

d ln fr
=

1

3
µ(πMfr)

2/3 =
1

3
(πfr)

2/3M5/3 (2)

for fr < fISCO ≡ 1/(63/2πM). Here µ = m1m2/M , M =
m1 + m2, and M5/3 = µM2/3 are the reduced, total, and
chirp masses for a binary, and fISCO is the GW frequency
at ISCO. Substituting into Eq. (1),

h2
c(f) =

4f−4/3

3π1/3

∫

dzdm1dm2
∂3n

∂z∂m1∂m2

µM2/3

(1 + z)1/3
. (3)

It is also useful to examine the number of MBHBs and their
respective contributions to the total signal (Phinney 2001;
SVC08). Eq. (3) can be rewritten as

h2
c(f) =

∫

dzdm1dm2
∂4N

∂m1∂m2∂z∂ ln fr
h2(M, z, fr), (4)

where N is the number of sources, which we can calculate
from a comoving merger rate density as explained below,
and

h(M, z, fr) =
8

101/2
M

dL(z)
(πMfr)

2/3, (5)

is the sky and polarization averaged characteristic GW
strain amplitude of a single binary with chirp mass M, at
the particular orbital radius corresponding to fr.

We generate the distribution ∂4N/(∂m1∂m2∂z∂ ln fr)
corresponding to a comoving merger rate density1

∂4N/(∂m1∂m2∂tr∂Vc) (see Sec. 3.1), assuming that the
number of binaries emitting in the interval ln fr is propor-
tional to the time the binary spends at that frequency,

∂4N

∂m1∂m2∂z∂ ln fr
=

∂4N

∂m1∂m2∂tr∂Vc

dVc

dz

dz

dtr

dtr
d ln fr

(6)

where dVc/dz and dz/dtr are given by the standard cos-
mological relations between comoving volume, redshift, and
time, given in e.g. Phinney (2001). The last factor can be
expressed using the residence time tres = a(da/dtr)

−1 the
binary spends at a particular semimajor axis as
∣

∣

∣

∣

dtr
d ln fr

∣

∣

∣

∣

=

∣

∣

∣

∣

dtr
d ln a

d ln a

d ln fr

∣

∣

∣

∣

=
2

3
tres, (7)

where Kepler’s law, a = M(πMfr)
−2/3, was used to obtain

d ln a/d ln fr = 2/3, and the residence time for a purely GW-
driven evolution is

tres = tgwres ≡
dtr
d ln a

=
5

64
M(πMfr)

−8/3. (8)

In summary, the distribution of sources in Eq. (4) becomes

∂4N

∂m1∂m2∂z∂ ln fr
=

2

3

∂4N

∂m1∂m2∂tr∂Vc

dVc

dz

dz

dtr
tres. (9)

Equations (3) and (4–9) are equivalent, but (4–9) are prac-
tical to generate discrete Monte Carlo realizations of a
given source population. Moreover, Equations (4–9) provide
a transparent interpretation of (3). The total RMS back-
ground, hc ∝

√
Nh ∝ f−2/3, comes about because the mean

number of binaries per frequency bin is N ∝ tgwres ∝ f
−8/3
r

and each binary generates an RMS strain h ∝ f
2/3
r . The

scaling hc ∝ f−2/3 is a consequence of averaging over the

1 In practice ∂4N/(∂m1∂m2∂tr∂Vc) is a function of m1, m2, and
z.
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4 B. Kocsis & A. Sesana

local inspiral episodes of merging binaries in the GW driven
regime, but is completely independent on the overall cos-
mological merger history or on the involved MBH masses.
The latter affects only the overall constant of proportional-
ity. Eq. (3) also shows that this scaling constant is insen-
sitive to the cosmological redshift distribution of mergers,
hc ∝ (1 + z)1/6, as well as the number of minor mergers
with µ ≪ M , once the total mass in satellites merging with
BHs of mass M is fixed (Phinney 2001). However, the back-
ground is sensitive to the assembly scenarios of major merg-
ers (SVV09). More importantly, as shown in SVC08, the
actual GW signal in any single realization of inspiralling bi-
naries is qualitatively different from hc ∝ f−2/3, as a small
discrete number of individual massive binaries dominate the
nHz GW-background, creating a very spiky GW spectrum.
We further discuss the discrete nature of the signal in Sec-
tion 2.3 below.

2.2 Gas-driven inspirals

Let us now derive the GW background for an arbitrary
model of binary evolution. We can derive the background
using the residence time tres the binary spends at each semi-
major axis a, where tres < tgwres in the gas driven phase (cf.
Eq. [8] for the purely GW driven case). We define tres for
various accretion-disk models in Section 3.2. Generally, the
emitted GW spectrum is

dEgw

d ln fr
=

dEgw

dtr

dtr
d ln fr

=
2

3

dEgw

dtr
tres. (10)

The second equality follows the definition of tres and Kepler’s
law (see Eq. [7]). The emitted power dEgw/dtr depends only
on the masses and the geometry of the orbit, but is indepen-
dent of the global migration rate of the binary, and therefore
it is the same as in the pure GW driven case. The effects of
migration is fully encoded in tres. Plugging back in Eq. (1),
the mean square signal in the gas driven phase is

h2
c(f) =

4f−4/3

3π1/3

∫

dzdm1dm2
∂3n

∂z∂m1∂m2

µM2/3

(1 + z)1/3

× tres(M,µ, fr)

tgwres(M, fr)
(11)

A comparison with (3) shows that the RMS signal is attenu-

ated in the gas driven phase by
√

tres(M,µ, fr)/t
gw
res(M, fr).

This factor is a complicated function of fr, that behaves dif-
ferently for different masses and mass ratios of the binaries;
the overall spectrum is no longer a powerlaw.

We generate Monte Carlo realizations of the GW signal
by sampling the population of the inspiralling systems. To
do this, it is sufficient to recognize that the derivation given
by Eqs. (4–9) remains valid in the gas drive phase if using
the appropriate tres(M,µ, fr), since the contribution given
by each individual source to the signal is the same. The net

GW spectrum changes because of a reduction in the number

of sources in the gas driven case.
Note that the individual GW signal given by Eq. (5) de-

pends on three parameters only: M, z, and fr. This implies
that signals from sources with the same observed frequency,
redshift, and chirp mass, (fr, z,M), but different mass ra-

tios, q, are totally indistinguishable2. We can make use of
this property and reduce the number of independent param-
eters in the distribution by integrating over the mass ratio
in Eq. (4)

∂3N

∂M∂z∂ ln fr
=

∫ 1

0

dq
∂4N

∂m1∂m2∂z∂ ln fr

∣

∣

∣

∣

∂(m1,m2)

∂(M, q)

∣

∣

∣

∣

, (12)

Note, that this step is different for the GW and gas driven
cases, because ∂4N/(∂m1∂m2∂z∂ ln fr) is proportional to
tres in Eq. (9). Here |∂(m1,m2)/∂(M, q)| is the determi-
nant of the Jacobian matrix corresponding to the variable
change from (m1,m2) to (M, q). With Eq. (9) and (12) we
derive ∂3N/(∂M∂z∂ ln fr) for any gas driven model given
by tres(M,µ, fr), and draw Monte Carlo samples of inspi-
ralling binaries from this distribution when generating the
GW signal.

2.3 Statistical characterization of the signal

In observations with PTAs, radio-pulsars are monitored
weekly for total periods of several years. Assuming a re-
peated observation in uniform ∆t time intervals for a total
time T , the maximum and minimum resolvable frequencies
are fmax = 1/(2∆t), corresponding to the Nyquist frequency,
and fmin = 1/T . The observed GW spectrum is therefore
discretely sampled in bins of ∆f = fmin. For circular orbits,
the frequency of the GWs is twice the orbital frequency.

Let us examine whether the sources’ GW frequency
evolves during the observation relative to the size of the fre-
quency bins. Writing the frequency shift during an observa-
tion time T as ∆fevol ≈ ḟT = (d ln f/d ln a)(d ln a/dt)fT =
3
2
fT/[(1 + z)tres] and considering the frequency resolution

bin to be ∆fbin = 1/T , then the frequency evolution relative
to the frequency resolution bin is

∆fevol
∆fbin

≈ 3

2

fT 2

(1 + z)tres
=

0.015

1 + z
M5/3

8.5 f
11/3
50 T 2

10

tgwres
tres

, (13)

where M8.5 is the chirp mass in units of 108.5M⊙, f50 is
the frequency in units of 50 nHz, T10 is the observation time
in unit of 10 years, and for the second equality we have
used equation (8). Equation (13) shows that typical binaries
contribute to a single frequency bin as stationary sources in
the GW-driven regime.3 We shall demonstrate that this is
also true in the gas driven case (see Figure 1 below).

We generate Nk different realizations of the signal (usu-
ally Nk = 1000), i.e. Nk realizations of the MBHB popula-
tion, consistent with Eq. (9) (see Section 3.1). Each of those
consists of Nb ∼ 103 − 104 binaries producing a relevant
contribution to the signal, which we label by (Mi, zi, fri),
i = 1, 2, . . . , Nb. The total signal (Eq. [4]) in each frequency
resolution bin ∆f is evaluated as the sum of the contri-
butions of each individual source (see Amaro-Seoane et al.
(2009) for the detailed numerical procedure)

h2
c(f) =

∑

i

h2
c,i(Mi, zi, fri), , (14)

2 This is true only in the angular averaged approximation. We
neglect the directional sensitivity of PTAs.
3 The detection of the frequency shift of an M8.5 = f50 = z = 1
source would require an extended observation with T∼>35 yr.
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where for each f the sum is over the inspiralling sources
emitting in the corresponding blue–shifted (i.e. restframe)
∆fr frequency resolution bin, and hc,i = hi

√
fiT is the angle

and polarization averaged GW strain given by Eq. (5), mul-
tiplied by the square root of the number of cycles completed
in the observation time. For comparison, we also evaluate
the continuous integral Eq. (4), which represents the RMS
average of Eq. (14) over different realizations of MBHB pop-
ulations in the limit Nk → ∞.

Since the mass function of merging binaries is in gen-
eral quite steep, the relative contributions of the few most
massive binaries turn out to dominate the background in
each frequency bin. The total GW signal depends very sen-
sitively on these rare binaries, and the inferred spectrum is
very spiky. It is useful to separate the total signal hc into a
part generated by a population of GW–bright individually

resolvable sources, and a stochastic level hs, which includes
the contribution of all the unresolvable, dimmer sources.
More precisely, in each frequency resolution bin, we find the
MBHB with the largest h2

c,i(Mi, zi, fri), and we define it
individually resolvable if its signal is stronger than the total
contribution of all the other sources in that particular fre-
quency bin. The stochastic level is consequently defined by
adding up only the unresolvable sources in Eq. (14). Since
the signal is dominated by few individual sources in each
frequency bin, the hs(f) distribution obtained over the Nk

realizations is far from being Gaussian or just even symmet-
ric. To give an idea of the uncertainty range of hs(f), we
calculate the 10%, 50% and the 90% percentile levels of the
hs(f) distribution of the Nk different realizations.

The separation of individually resolvable sources is use-
ful for several reasons (see SVC; SVV09). First, it is use-
ful from a statistical point of view for understanding the
variance of the expected GW spectrum among various re-
alizations of the inspiralling MBHBs. The discrete nature
of the resolvable sources allows a different statistical anal-
ysis than for the smooth background level corresponding
to the stochastic level, hs(f). The individually resolvable
signals could also be important observationally. A suffi-
ciently GW–bright resolvable binary allows to measure the
GW polarization using PTAs, and give information on the
sky position of the binary (Sesana & Vecchio 2010), which
might be used to search for direct electromagnetic signa-
tures like periodically variable AGN activity (HKM09). A
coincident detection of GWs and electromagnetic emission
of the same binary would have far reaching consequences
in fundamental physics, cosmology, and black hole physics
(Kocsis, Haiman, & Menou 2008).

2.4 Timing Residuals

In general, the characteristic GW amplitudes (either of a
stochastic background or of a resolvable source) can be
translated into the pulsar timing language by converting
hc(f) into a “characteristic timing residual” δtc(f) corre-
sponding to the sky position and polarization averaged delay
in the time of arrivals of consequent pulses due to GWs,

δtc(f) =
hc(f)

2πf
. (15)

The pulsar timing residuals expected from an individual
stationary GW source is derived in section 3 of SVV09 in

detail. The corresponding measurement can be represented,
in the time domain, with a residual:

δt(t) = r(t) + δtN(t) (16)

where r(t) is the contribution due to the GW source (which
accumulates continuously with observing time t, see below),
and δtN(t) represents random fluctuations due to noise. The
latter is the superposition of the intrinsic noise in the mea-
surements and the GW stochastic level from the whole pop-
ulation of MBHBs, with a root-mean-square (RMS) value

δt2N,rms(f) = 〈δt2N(f)〉 = δt2p(f) + δt2s (f). (17)

where tp(f) is the RMS instrumental and astrophysical noise
corresponding to the given pulsar, and δts(f) = hs(f)/(2πf)
is due to the RMS stochastic GW background of unresolved
MBHBs, as defined in the previous section.

The sky angle and orbital orientation-averaged signal-
to-noise ratio (SNR) at which one MBHB, radiating at
(GW) frequency f , can be detected using a single pulsar
with matched filtering is

SNR2 =
δt2gw(f)

δt2N,rms(f)
. (18)

Here δtgw(f) is the root-mean-squared timing residual signal
resulting from GWs emitted by the individual stationary
source over the observation time T defined as:

δtgw(f) =

√

8

15

h(M, z, f)

2πf

√

fT (19)

where h(M, z, f) is the angle and polarization averaged GW

strain amplitude given by Eq. (5), the prefactor
√

8/15 av-
erages the observed signal over the “antenna beam pattern”
of the array (Eq. (21) in SVV094), and the

√
fT term ac-

counts for the residual build-up with the number of cycles.
For Np number of pulsars, the total detection SNR, of an
individually resolvable MBHB is the RMS of the contribu-
tions of individual pulsars given by (18). For Np identical
pulsars, the effective noise level is therefore attenuated by
N

−1/2
p .

In the following we will represent the overall GW signal
and the stochastic background by using either their charac-
teristic amplitudes, hc(f) and hs(f), or the corresponding
characteristic timing residuals, δtc(f) and δts(f), according
to equation (15). We study the detection significance of indi-
vidually resolvable sources and the distribution of their num-
bers as a function of the induced δtgw. For each Monte Carlo
realization of the emitting MBHB population, we count the
cumulative number of all (Nt) and resolvable (Nr) sources
above δtgw as a function of δtgw:

Nt/r(δtgw) =

∫

∞

δtgw

∂Nt/r

∂δt′gw
δt′gw , (20)

where the integral is either over all sources or only the indi-
vidually resolvable sources (i.e. restricted to those that pro-
duce residuals above the RMS stochastic level, see Sec. 2.3).

4 Note that that the square root in the prefactor
√

8/15 is miss-
ing in Eq. (20) of SVV09 because of a typo there.
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3 THE EMITTING BINARY POPULATION

We calculate the GW signal by generating a catalogue of
binaries consistent with Eq. (9). This requires (i) a model
for the comoving merger rate density of coalescing MBHBs,
∂4N/(∂m1∂m2∂tr∂Vc), and (ii) a model for the evolution
of individual inspiralling binaries tres(M,µ, fr). These two
items are the subjects of the next two subsections below.

3.1 Population of coalescing massive black hole

binaries

We use the population models described in section 2 of
SVV09, the reader is deferred to that paper for full de-
tails. We extract catalogs of merging binaries from the semi-
analytical model of Bertone et al. (2007) applied to the Mil-
lennium run (Springel et al. 2005). We then associate a cen-
tral MBH to each merging galaxy in our catalogue. We ex-
plored a total of 12 models, combining four MBH-bulge pre-
scriptions found in the literature with three different ac-
cretion scenarios during mergers. The twelve models are
listed in table 1 of SVV09. In the present study we shall
use the Tu-SA population model as our default case. In this
model, the MBH masses in the merging galaxies correlate
with the masses of the bulges following the relation reported
in Tundo et al. (2007), and accretion is efficient onto the
more massive black hole, before the final coalescence of the
binary. Since the comparison among different MBHB popu-
lation models is not the main purpose of this study, we will
present results only for this model. However, we tested our
dynamic scenario on other population models presented in
SVV09, finding no major differences for alternative models.

Assigning a MBH to each galaxy, we obtain a cata-
logue of mergers labelled by MBH masses and redshift. From
this, we generate the merger rate per comoving volume,
∂4N/(∂m1∂m2∂tr∂Vc). In practice, due to the large number
of mergers in the simulation, this is a finely resolved continu-
ous function, describing the merger rate density as a function
of m1, m2, and z. After plugging into Eqs. (9) and (12), we
can obtain the continuous distribution ∂3N/(∂M∂z∂ ln fr)
one would observe in an “ideal snapshot” of the whole sky.
We then sample this distribution to generate random Monte
Carlo realizations of the GW signal. In summary, the chosen
MBHB population model fixes the cosmological merger his-
tory, i.e. the function ∂4N/(∂m1∂m2∂tr∂Vc), and “Monte
Carlo sampling” refers to first choosing a realization of the
cosmological merger history (i.e. generate Nb number of bi-
nary masses and redshifts5) and then assigning an orbital
frequency (or time to merger) to each binary. In addition to
our fiducial merger rate, we also examine for the first time
the situation where minor mergers do not contribute to the
coalescence rate of the central MBHs. This is motivated by
recent numerical simulations indicating that minor mergers
with mass ratios q < 0.1 lead to tidal stripping of the merg-
ing satellite, and the resulting core does not sink efficiently
to the centre of the host galaxy (Callegari et al. 2009). We
identify the mass ratio of merging galaxies using the mass

5 HereNb is chosen randomly for each distribution, it can vary for
different realizations of the population according to a Gaussian

distribution with σ = 1/
√

〈Nb〉 around the mean 〈Nb〉.

of the stellar components, to avoid complications due to the
tidal stripping of merging dark matter halos. In practice, we
find that suppressing all the minor mergers does not affect
the resulting GW signal, implying that the contribution of
mergers involving dwarf galaxies is negligible.

3.2 Binary evolution in massive circumbinary

disks

We adopt the simple analytical models of HKM09 to de-
scribe the dynamical evolution of MBHBs in a geometrically
thin circumbinary accretion disk.

The inspiral rate is defined using the (comoving) res-
idence time the binary spends in a logarithmic separation
bin centred on the semimajor axis a, tres = a(dtr/da). The
inspiral rate is non-uniform as the binary separation shrinks,
as anticipated in Section 1, and it evolves through several
phases: (i) initially, migration occurs on a timescale td dom-
inated by the disk viscosity, and then, when the secondary
mass is much larger then the thin disk mass enclosed in the
binary orbit, it settles on a timescale ts dictated by the sec-
ondary BH dynamics; (ii) the opacity changes from free-free
κff at large binary separations to electron scattering κes at
smaller separations; (iii) the pressure is dominated by gas
pressure pgas for wide systems and by radiation pressure
prad for close ones; (iv) eventually, the inspiral rate due to
GW emission dominates over the gas-driven type-II migra-
tion rates. We can define 4 corresponding transition points
between the various phases: as/d, aff/es, agas/rad, and aII,GW.
The transition radii depend on the binary masses and the
accretion disk parameters (see HKM09), but typically obey

aII,GW < agas/rad < aff/es < as/d. (21)

We consider two different models of steady accretion
disks, α and β–disks. For the classic Shakura & Sunyaev
(1973) α model, the viscosity is proportional to the total
(gas+radiation) pressure of the disk. Until very recently, this
model, if radiation pressure dominated, has been thought to
be thermally and viscously unstable (Lightman & Eardley
1974; Piran 1978). In the alternative β-model, the viscosity
is proportional to the gas pressure only6, and it is stable
in both sense. The nature of viscosity is not well under-
stood to predict which of these prescriptions lies closer to re-
ality. Recent numerical magneto-hydrodynamic simulations
(Hirose, Krolik, & Blaes 2009) suggests that the thermal
instability is avoided in radiation pressure dominated situ-
ations because stress fluctuations lead the associated pres-
sure fluctuations, and seem to favor the α prescription over
the β–model. We carry out all calculations for both models,
but consider the α prescription as our fiducial disk model.
In both cases, the model is uniquely determined by three
parameters: the central BH mass, the accretion rate Ṁ ,
and the α viscosity parameter. The exact value of these pa-
rameters is not well known. Observations of luminous AGN
imply an accretion rate around ṁ = Ṁ/ṀEdd = (0.1–1)
with a statistical increase towards higher quasar luminosities
(Kollmeier et al. 2006; Trump et al. 2009). Here ṀEdd =

6 The name comes from the definition ν ∝ αpβgasp
1−β
tot where

β = 1 for the β–model, while β = 0 for the α model. In both
cases α is a free model parameter.
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Massive black holes and pulsar timing 7

Figure 1. Residence time, tres, as a function of the binary period.
Different panels correspond to selected model parameters as la-
belled. In each panel the thick curves represent the residence time
for the gas driven dynamics according to HKM09. Solid, long–
dashed and short–dashed curves are for q = 1, 0.1, 0.01 respec-
tively. The two thin dotted vertical lines approximately bracket

the PTA observable window. The extrapolated pure GW-driven

evolution (tgwres ∝ t
8/3
orb

) is shown as thin lines, for comparison. The
ratio tres/t

gw
res gives the relative decrease in the number of binaries

in the gas dominated case compared to the GW driven case.

LEdd/(ηc
2) is the Eddington accretion rate for η = 10% ra-

diative efficiency, where LEdd is the Eddington luminosity.
Observations of outbursts in binaries with an accreting white
dwarf, neutron star, or stellar black hole imply α = 0.2–0.4
(Dubus, Hameury, & Lasota 2001; King, Pringle, & Livio
2007, and references therein). Theoretical limits based on
simulations of magneto-hydrodynamic turbulence around
black holes are not conclusive, but are consistent with α
in the range 0.01–1 (Pessah, Chan, & Psaltis 2007). It is
however unclear whether these numbers are directly appli-
cable to circumbinary MBH systems. We explore several
choices covering all 6 combinations with ṁ = {0.1, 0.3} and
α = {0.01, 0.1, 0.3} for both α and β–disks, respectively.
Motivated by the considerations outlined above, we high-
light the α-disk with ṁ = 0.3 and α = 0.3 as our default
model.

These disk–models were developed for a single accreting
BH. In the case of a binary, we assume that the structure
of the disk is given by that of a single steadily accreting BH
with a mass equal to the total binary mass. The effect of the
binary is to generate a perturbation, a spiral density wave,
which in turn slowly drains angular momentum from the
system. Figure 1 shows the evolution of the residence time
tres as a function of the binary period for selected MBH
masses and disk models (for more illustrations and detailed
discussion see Figures 1–5 in HKM09). The disk evolution in
the various regimes summarized by Eq. (21) is as follows. At
the smallest orbital periods torb, the evolution is driven by
GWs, and tres = tgwres ∝ t

8/3
orb (see Eq. 8). At larger separation,

the gas can shrink the binary at a much faster rate and
determines the evolution. In the secondary-dominated Type-
II migration regime for sufficiently close orbits the radiation
pressure dominates, and tres ∝ t

35/24
orb

–t
7/12
orb

, for α and β
disks respectively. Further out in the gas pressure dominated
regime tres ∝ t

7/12
orb –t

25/51
orb (with electron scattering versus

free-free opacity). At the largest separations in the disk-

dominated Type-II migration regime tres ∝ t
5/6
orb .

Note that for quadrupole radiation the frequency of the
GW is simply fr = 2/torb. The number of binaries at any
given torb is proportional to the residence time tres. There-
fore, the decrease in tres in the gas driven regime compared
to the GW driven case implies a decrease in the population
of MBHs, which ultimately leads to the attenuation of the
low frequency end of the observable total GW spectrum. The
RMS GW spectrum averaged over the whole population of
binary inspiral episodes is no longer a powerlaw. It is inter-
esting to examine the contributions of various evolutionary
phases according to Eq. (11), hc ∝ f−2/3

√

tres/t
gw
res. If all bi-

naries were in the GW driven phase then hc ∝ f−2/3. If all
were in the secondary-dominated Type-II migration regime
with a radiation pressure dominated disk7 hc ∝ f−1/16–
f3/8 for α and β disks, respectively, further out hc ∝ f3/8–
f43/102 in the gas pressure dominated regime (with electron
scattering versus free-free opacity), and finally hc ∝ f1/4 in
the disk-dominated Type-II migration regime. In any case,
the GW spectrum hc(f) is much shallower in the gas driven
phase. Note the gas driven phase contributes a nearly flat or
an increasing spectrum hc(f), very different from the nom-
inal f−2/3 GW driven case. In general, the orbital separa-
tion of the more massive objects at a given fr is smaller
in terms of their Schwarzschild radii. Since the transition
to the gas driven region, when expressed in Schwarzschild
radii, is roughly independent of mass, it follows then at any
given frequency bin the more massive objects are typically
GW driven and lighter objects are gas driven. The total av-
erage spectrum8 assuming only wet 9 mergers, is between
f−2/3 and f0.4 depending on the ratio of GW driven to gas
driven binaries. Note however, that the individually resolv-
able sources are typically very massive and are in the GW-
driven phase for the relevant range of binary separations,
and therefore their properties should not be modified by gas
effects.

4 RESULTS

4.1 Description of the signal

As stated in Sec. 2.3, the relevant frequency band for pulsar
timing observations, assuming a temporal observation base-
line T and a time interval between subsequent observations

7 Most of the gas driven binaries contributing to the background
at large frequencies are in this regime.
8 if averaging over each binary episode but not over the cosmo-
logical merger tree
9 Here “wet” refers to gas rich mergers where the dynamics of the
binary is driven by both GW emission and by torques exerted by
the circumbinary disk, while “dry” refers to the case where there
is a little gas to be funneled in the galactic center, and the binary
dynamics is driven by GW emission only. Note that in both cases
we neglect interaction with stars.
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8 B. Kocsis & A. Sesana

Figure 2. Components of the GW signal from a population of inspiralling MBHBs. In the left panel we consider all binaries embedded
in a gaseous α-disk for our default model (all mergers wet), while in the right panel all binaries are purely GW driven (all mergers dry).
In each panel, the smooth solid line is the RMS total characteristic GW strain hc using the integral expression (4–9) (which correspond
to an average over Nk → ∞ Monte Carlo realizations), the two dashed black lines represent the RMS total signal (upper) and the
RMS stochastic background level (lower) averaged over Nk = 1000 Monte Carlo realizations respectively. The jagged blue line displays
a random Monte Carlo realization of the GW signal. The small black and red triangles show the contributions of the brightest and
resolvable sources in each frequency bin respectively. The jagged red line is the stochastic GW background for this realization, i.e., once
the resolvable sources in each frequency bin are subtracted. The green dots label all the systems producing an RMS residual tgw > 0.3 ns
over T = 10 years. The dotted diagonal lines shows constant tgw levels as a function of frequency. An observation time of 10 years is
assumed.

∆t, is between fmin ≈ 1/T and fmax ≈ 1/(2∆t) with a res-
olution ∆f ≈ 1/T . In our calculations we assume a default
duration of T = 10 yr for the PTA campaign with ∆t ≈ 1
week. This gives fmin ≈ 3 × 10−9 Hz, fmax ≈ 10−6Hz and
∆f ≈ 1/T ≈ 3 × 10−9 Hz. The simulated signal is com-
puted by doing a Monte Carlo sampling of the distribution
∂3N/(∂z∂M∂ ln fr), and adding the GW contribution of
each individual source. In each frequency bin, we identify
the individually resolvable sources and the stochastic back-
ground. We repeat this exercise Nk = 1000 times for the 12
steady disk models defined in Sec. 3.2 and for the purely
GW–driven case. In addition, we also calculate the GW sig-
nal using the integral expression (4–9) using the continuous
distribution function, which corresponds to the RMS aver-
age of the GW signal in the Nk → ∞ limit.

The GW signal and its most important ingredients are
plotted in Figure 2. The left panel shows results for gas–
driven inspirals using our default α-disk (i.e. “gas on” – all
mergers wet), the right panel shows results for purely GW–
driven inspirals for comparison (i.e. “gas off” – all merg-
ers dry) for the same underlying cosmological MBHB coa-
lescence rate. A randomly selected Monte Carlo realization
of the signal is depicted as a dotted blue jagged line. The
green dots represent the contributions of individual bina-
ries; systems producing δtgw(f) > 0.3 ns timing residual are
shown. In each frequency bin, the brightest source is marked
by a black triangle. The individually resolvable sources are

marked by superposed red triangles, and the stochastic level
from all unresolvable sources is shown with a solid red jagged
line. Clearly, the GW signal for any single realization is far
from being smooth. The noisy nature of the signal is due to
rare massive binaries rising well above the stochastic level.
Solid black curves in Figure 2 show hc(f), the RMS value
of the GW signal averaged over the merger episodes, using
the integral expression (4–9). The upper black dashed curve
is the GW signal, averaged over Nk = 1000 Monte Carlo re-
alizations of the merging systems. This is still noisy, due to
the finite number of realizations used, but is consistent with
the integrated average shown by the solid black curve. The
lower black dashed curve marks the RMS stochastic compo-
nent, hs,rms(f), averaged over the same Nk = 1000 realiza-
tions. Figure 2 shows that the gaseous disk greatly reduces
the number of binaries at small frequencies compared to the
GW–only case, as gas drives the binaries in quickly towards
the final coalescence. Consequently, the signal is more spiky
in the presence of gas. There is a clear flattening of the
RMS spectrum at low frequencies (f < 1/yr) in the gas-
driven case compared to the purely GW-driven case. The
stochastic level is more suppressed in the wet-only case and
is much steeper than f−2/3 at high frequencies. Despite the
spiky signal in a given Monte Carlo realization, the over-
all shape of the background is well recognizable in the GW
driven model, while the characterization of the global shape
of the signal in the gas driven case appears to be less viable.
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Figure 3. Same as left panel of Figure 2, but for an observation
lasting 100 years (Averages over the 1000 realizations are not
shown in this case for clarity).

Gas driven migration becomes more and more promi-
nent at large binary separations, corresponding to large or-
bital times or small GW frequencies. Therefore, to check
the ultimate maximum impact of gas effects on future PTA
detections, we simulated the spectrum for a hypothetical
T = 100 yr observation baseline. Figure 3 shows a realiza-
tion of the spectrum for such an extended observation, as-
suming our default gas model (i.e. all mergers wet). Given
the extended temporal baseline, the minimum observable
frequency is pushed down to ∼ 3×10−10 Hz, where the spec-
trum of gas driven mergers is considerably flatter. Moreover,
the frequency resolution bin is then narrower, the number
of sources per bin is much smaller, and more sources be-
come resolvable. At the smallest frequencies, the induced
timing residual can be higher than 1µs and more than 50
sources will be individually resolvable at 1ns precision level,
some of them with an SNR as high as 100. These numbers
are not severely modified if considering purely GW–driven
dry mergers only (see Fig. 5 below). Interestingly, due to
the high frequency resolution of such an extended observa-
tion, the GW frequency of some of the resolvable binaries
may evolve significantly during the observation (e.g. a bi-
nary with masses m1 = m2 = 5 × 108 M⊙ or higher are
nonstationary relative to the bin size at frequencies above
f∼>40 nHz, see equation [13]). Therefore it may be possi-
ble to detect the frequency evolution of individually resolv-
able binaries during such an extended monitoring campaign.
However, this computation is idealized: it is questionable if
millisecond pulsars can maintain a ns timing stability over
such a long timescale, nonetheless, it points out the enor-
mous capabilities of long term PTA campaigns.

4.2 Individually resolvable sources

Let us now examine the prospects for detecting individual
sources using PTAs. How many sources are expected to be
individually resolvable? How significant is their detection?

As explained in Sec. 2.4, the signal from a specific binary
can be detected using a PTA if the corresponding timing
residual δt2gw is above the RMS noise level δt2N,rms character-
izing the PTA given by Eq. (18). We should notice, however,
that this estimate of the number of individually resolvable
sources is conservative and is likely to provide only a lower

limit for the following reasons. Firstly, we average over the
sky position of the binaries and pulsars, while in reality, it
may be possible to take advantage of the different GW polar-
ization and amplitude generated by sources in different sky
positions to deconvolve their signal (even if they have similar
strength and frequency). Secondly, the brightest source iden-
tification algorithm can be implemented recursively, after an
accurate subtraction of the identified sources. However, we
find that, especially at low frequencies, the distribution of
GW source amplitudes for various binaries in a single fre-
quency bin is not strongly hierarchical, so that a recursive
brightest source finding algorithm shouldn’t increase signif-
icantly the number of resolvable systems. We present here
results both in terms of the total number (Nt) and resolvable
systems (Nr, see Eq. 20).

In Figure 4 we plot the distribution of the number of
sources (total and resolvable) as a function of timing resid-
ual, detection frequency, redshift, and chirp mass, found in
two particular realizations of our default α-disk (all merg-
ers wet) and in the purely GW-driven models (all mergers
dry). The figure shows that even though there are much
more sources in the purely GW-driven case, the number of
sources rising above the stochastic level is almost the same in
the purely dry and wet cases. Figure 4 also shows the chirp
mass, redshift, and frequency distribution for sources above
1 ns timing level. As was previously shown in SVV09, the
bulk of the sources are cosmologically nearby (z∼<1) with
masses peaking around M ∼ 2 × 108 M⊙. Figure 4 shows
that gas dynamics does not introduce a major systematic
change in the shape of the redshift and the chirp mass dis-
tributions. The lower left panel shows that gas removes a
systematically larger fraction of sources at small frequen-
cies.

Figure 5 shows the cumulative number of binaries (to-
tal and resolvable) as a function of timing residual. The up-
per panel shows results for the α–disk models with ṁ = 0.3
and different α. The statistics of resolvable sources is almost
unaffected by the large suppression of the total number of
sources at a fixed timing residual. For example, in all of our
models, we expect ∼ 2 resolvable sources at a timing level
of δtgw = 10 ns, even though the total number of sources
contributing to the signal at that level spans about an order
of magnitude among the different models (∼ 5 for α = 0.3
to ∼ 50 for binaries driven by GW only). The same is true
for β–disk model (lower panel), even though in this case the
total number of sources at a particular δtgw is not reduced
dramatically by gas effects. This result can be understood
with a closer inspection of Figure 1. Let us focus on the α–
disk model. As explained in Sec. 3.2, the impact of gas driven
dynamics in the PTA window is more significant for lower
binary masses and unequal mass ratios. These are the bina-
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Figure 4. Top-left panel: characteristic amplitude of the timing residuals δtgw (equation (19)) as a function of frequency; the dots
are the residuals generated by individual sources and the solid line is the estimated stochastic level of the GW signal. Top-right panel:
distribution of the number of total (dotted lines) and resolvable (solid lines) sources per logarithmic redshift interval as a function of
redshift, generating a δtgw > 1ns. Bottom-left panel: distribution of the number of total (dotted lines) and resolvable (solid lines) sources
per logarithmic frequency interval as a function of the GW frequency, generating a δtgw > 1ns. Bottom-right panel: distribution of the
total (dotted lines) and individually resolvable (solid lines) number of sources per logarithmic chirp mass interval as a function of chirp
mass, generating a δtgw > 1ns. All the black elements refer to our default disk model, the red elements are for a GW driven MBHB
population. Distributions are averaged over Nk = 1000 realizations of the MBHB population.

ries that build-up the bulk of the signal, and its stochastic
level is consequently greatly reduced in the gas driven case.
On the other hand, the population of high equal mass bi-
naries, which constitute most of the individually resolvable
sources, is almost unaffected by the presence of the circumbi-
nary disk, as they are already in the GW-driven regime in
the relevant range of binary periods.

Figure 6 shows expectations on the detection signifi-
cance of resolvable sources. The SNR distribution of resolv-
able sources (equation [18]) are shown as thin lines, account-
ing for the astrophysical GW noise from the unresolved bi-
naries, but neglecting the intrinsic noise of the array (i.e. as-
suming an ideal detector with infinite sensitivity, δt2p(f) = 0,
in equation 17). This calculation represents an upper limit

of the SNR. Thick lines, in Figure 6 plot the SNR consider-
ing a total detector noise of 1ns (appropriate for SKA). The
figure shows that the expected detection significance of re-

solvable sources is systematical higher for gas driven models
with larger α. In general, in an array with 1ns sensitivity, we
may expect a couple of individually resolvable sources with
SNR > 5. For near future instruments with much worse
sensitivity, the identification of resolvable sources might be
more challenging.

4.3 Stochastic background

Figure 7 shows the RMS stochastic level (i.e. after sub-
tracting off the individually resolvable sources, see Sec. 2.3)
for selected steady state gas disk models, averaged over
Nk = 1000 realizations. The top left panel highlights the
difference between wet and dry models, the top right and
bottom left panels collect different α–disk models and the
lower right panel is for selected β–disk models. The differ-
ent line styles show the effect of changing the α parameter
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Figure 5. Cumulative number of total (Nt(δtgw), thin lines) and
individually resolvable (Nr(δtgw), thick lines) sources emitting
above a given δtgw threshold as a function of δtgw . Upper panel:
α–disk model with ṁ = 0.3. Lines are for α =0.3 (solid), 0.1
(long–dashed) and 0.01 (short–dashed). The dotted lines refer,
for comparison, to the GW driven model. Lower panel: same as
upper panel but for a β-disk model. All the distributions refer to
the ensemble mean computed over all Nk = 1000 realizations of
the MBHB population.

Figure 6. SNR distribution of individually resolvable sources.
Thin and thick curves refer to neglecting the instrumental noise
or using a δtgw = 1ns timing precision, respectively. Linestyle as
in the upper panel of Figure 5.

Figure 7. Influence of the gas driven dynamics on hc (thin lines)
and on hs (thick lines). Upper left panel: GW driven dynamics
versus gas driven dynamics for our default disk model. Upper right
panel: α = 0.3 (solid), 0.1 (long–dashed), 0.01 (short–dashed), for
an α–disk with ṁ = 0.3. Lower left panel: same as the upper right
panel, considering an α–disk with ṁ = 0.1. Lower right panel:
same as the upper right panel, considering a β–disk with ṁ = 0.3.
The two dotted lines in each panel represent the sensitivity of the
complete PPTA survey and an indicative sensitivity of 1ns for the
SKA.

of the disk. We also show the RMS total signal level, which
is exactly proportional to f−2/3 in the dry case. In gen-
eral, the stochastic level matches the total signal level at
low frequencies, but is increasingly suppressed for frequen-
cies above f∼>10−8 Hz for all of our models. At sufficiently
large frequencies GW emission dominates even for wet merg-
ers, and both the RMS total signal and the stochastic level
approaches the purely GW–driven case. However, at small
frequencies, a significant fraction of binaries is driven by
gas, and the signal is attenuated and the spectrum is less
steep compared to the dry case. Figure 7 shows that gas–
driven migration suppresses the stochastic background sig-
nificantly, by a factor of 5 for our standard disk model below
10−8 Hz. The suppression of the total and stochastic levels
is a strong function of the model parameters. Interestingly,
there is almost no suppression for β–disks, or for α–disks
with a small accretion rate and/or a small α value. In these
cases, the local disk mass is smaller, resulting in longer vis-
cous timescales, and hence the population of widely sepa-
rated binaries is not reduced significantly.

Figure 8 quantifies how the stochastic background
changes among different Monte Carlo realizations, showing
the range attained by 10–90% of all Nk = 1000 realizations.
The variance is not the product of uncertainties related to
the parameters of the adopted cosmological and dynami-
cal model, but is purely determined by the small number
statistics of sources per frequency bin, intrinsic to the source
distribution. At f = 10−8Hz, the variance of the signal pro-
duced by our default disk model is ∼ 0.5dex. Decreasing α to
0.1 and 0.01, the variance drops to ∼ 0.35dex and ∼ 0.25dex
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Figure 8. Variance of the expected stochastic level of the signal
as a function of α. In all the panels we assume the α–disk model
with ṁ = 0.3 (except for the lower right panel, referring to the
GW driven model). Solid lines represent the median hs over 1000
Monte Carlo realizations, while the shaded area enclosed within
the two dashed lines is the 10%–90% confidence region . The two
dotted lines in each panel represent the sensitivity of the complete
PPTA survey and an indicative sensitivity of 1ns for the SKA.

respectively. In the case of all mergers driven by GWs, the
variance at the same frequency is only ∼ 0.15dex. This
means that, contrary to the GW driven model (SVC08),
it is impossible to predict the stochastic level of the signal
accurately for our default gas driven model. For a linear
fit, any power law in the range f−0.3 − f−1.1 is acceptable
within the level of variance of the signal in the frequency
range 3− 30 nHz .

5 DISCUSSION AND CONCLUSIONS

The presence of a strong nHz gravitational wave signal from
a cosmological population of massive black hole binaries, is
a clear prediction of hierarchical models of structure forma-
tion, where galaxy evolution proceeds through a sequence
of merger events. The detailed nature of the signal depends
however on a number of uncertain factors: the MBHB mass
function, the cosmological merger rate, the detailed evolu-
tion of binaries, and so on. In particular, MBHB dynamics
determines the number of sources emitting at any given fre-
quency, and thus the overall shape and strength of the signal.
Previous works on the subject (e.g. SVC08 and SVV09) con-
sidered the case of GW driven binaries only. In this paper we
studied the impact of gas driven massive black hole binary
dynamics on the nHz gravitational wave signal detectable
with pulsar timing arrays. This is relevant because in any
merger event, cold gas is efficiently funnelled toward the cen-
tre of the merger remnant, providing a large supply of gas to
the MBHB formed following the galaxy interaction. Even a
percent of the galaxy mass in cold gas funnelled toward the
centre, is much larger than the masses of the putative MBHs

involved in the merger so that the newly–formed binary evo-
lution may be driven by gas until few thousand years before
final coalescence.

To conduct our study, we coupled models for gas driven
inspirals of HKM09 to the MBHB population models pre-
sented in SVV09. Our simulations cover a large variety of
quasistationary one-zone disk models for the MBHB-disk
dynamical interactions (with an extensive exploration of the
α viscosity parameter and ṁ for α and β-disks), along with
several different prescriptions for the merging MBHB popu-
lation (four different black hole mass–galaxy bulge relations
coupled with three different accretion recipes). The differ-
ences with respect to the purely GW driven models (pre-
sented in SVV09) are qualitatively similar for all the con-
sidered MBHB populations, we thus presented the results
for the Tu-SA population model only, focusing on the im-
pact of the different disk models. Our main findings can be
summarized as follows:

• The effect of gas driven dynamics may or may not be
important depending on the properties of the circumbinary
disk. A robust result is that if the viscosity is proportional to
the gas pressure only (β-disk models), there is basically no
effect on the GW signal, independently of the other disk pa-
rameters. However, if the viscosity is proportional to the to-
tal (gas+radiation) pressure (α-disk models), then the GW
signal can be significantly affected, especially for α∼>0.1 and
ṁ∼>0.1.

• With respect to the GW driven case, the presence of
massive circumbinary disks affects the population of low–
unequal mass binaries predominantly (M < 108 M⊙, q <
0.1), causing a significant suppression of the stochastic level

of the signal, but leaving the number and strength of mas-
sive individually resolvable sources basically unaffected. In
our default model (α = 0.3, ṁ = 0.3), the stochastic back-
ground is suppressed by a factor of ∼ 5 at f < 10−8Hz.
This suppression factor decreases by increasing ṁ and/or
decreasing α. About 10 individual sources are resolvable at

1 ns timing level, independently of the adopted disk model.

• All the results shown here for the Tu-SA model, hold
for every other MBHB population model we tested. There
is a certain level of degeneracy between disk dynamics and
MBHB mass function: the stochastic level given by a popu-
lation of heavy binaries evolving by gas dynamics, can mimic
that of a population of lighter binaries that are driven by
GWs only. However, the variance of the signal would be
much bigger in the former case, because the signal is pro-
duced by fewer massive sources.

• The detection of GWs emitted by MBHBs embedded in
gaseous disks with high viscosity and accretion rate, may be
very challenging for relatively short term PTA campaigns
like the PPTA. In fact, we find that most of the 12 MBHB
population models tested in SVV09 would not produce a
stochastic signal detectable by the PPTA (i.e. the signal is
a factor of three below the PPTA capabilities for the Tu-SA
model). However, long term projects like the SKA, which
aim to nanosecond sensitivities, are expected to be able
to detect the GW signal, resolving a handful of individual
sources with high significance.

A word of caution should be spent to stress the fact
that our models are idealized in many ways. Firstly, we con-
sidered circular binaries only. If all the systems were signif-
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icantly eccentric, then the overall signal would be modified
by the multi-harmonic emission of each individual source.
Moreover, we only considered radiatively efficient, geomet-
rically thin, one-zone, stationary accretion disks. Further
studies should examine the accuracy of these approxima-
tions for gas driven migration in circumbinary disks around
MBHBs. Finally, it is likely that not all the binaries are
gas driven on their way to the coalescence, and the effi-
ciency of the disk-binary coupling may vary from merger to
merger depending on the environmental conditions, which
may modify the properties of the expected signal as well.
Nonetheless, our calculations provide clear predictions for
the possible attenuation of the stochastic GW background,
which may be confirmed or discarded by ongoing and forth-
coming pulsar timing arrays.
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