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ABSTRACT

The dynamical evolution of binaries of intermediate-massive black holes (IMBHs,
massive black holes with a mass ranging between 102 and 104 M⊙) in stellar clusters
has recently received an increasing amount of attention. This is at least partially due
to the fact that if the binary is hard enough to evolve to the phase at which it will
start emitting gravitational waves (GWs) efficiently, there is a good probability that
it will be detectable by future space-borne detectors like LISA. We study this evolu-
tion in the presence of rotation in the cluster by carrying out a series of simulations
of an equal-mass binary of IMBHs embedded in a stellar distribution with different
rotational parameters. The survey indicates that eccentricities and inclinations are
primarily determined by the initial conditions of the IMBHs and the influence of dy-
namical friction, even though they are finally perturbed by the scattering of field stars.
In particular, the eccentricity is strongly connected to the initial IMBHs velocities, and
values of ∼ 0.7 up to 0.9 are reached for low initial velocities, while almost circular
orbits result if the initial velocities are increased. Evidence suggests a dependency of
the eccentricity on the rotation parameter. We found only weak changes in the in-
clination, with slight variations of the orientation of the angular momentum vector
of the binary. Counter-rotation simulations yield remarkably different results in ec-
centricity. A Monte Carlo study indicates that these sources will be detectable by a
detector such as LISA with median signal to noise ratios of between 10 and 20 over a
three year period, although some events had signal to noise ratios of 300 or greater.
Furthermore, one should also be able to estimate the chirp-mass with median frac-
tional errors of 10−4, reduced mass on the order of 10−3 and luminosity distance on
the order of 10−1. Finally, these sources will have a median angular resolution in the
LISA detector of about 3 square degrees, putting events firmly in the field of view of
future electromagnetic detectors such as LSST.

Key words: stellar dynamics – black hole physics – gravitational waves – detection
– globular clusters: general
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1 INTRODUCTION

Even though their existence are not as well-established as
the existence of stellar-mass or supermassive black holes
(SMBHs), it is plausible that intermediate-mass black holes
(IMBHs; masses M ∼ 102−4 M⊙) exist in the centre of
stellar clusters (see Miller & Colbert 2004, and references

http://arxiv.org/abs/0908.0755v2
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therein). The coalescence of a binary of two massive black
holes in that mass range is a powerful source of gravity
waves which will be detectable by space-born observatories
such as the Laser Interferometer Space Antenna (LISA1)
(Amaro-Seoane & Freitag 2006; Amaro-Seoane et al. 2009).

There are two possible ways to theoretically ex-
plain the presence of a binary of IMBHs in a globu-
lar cluster. (1) The “single cluster channel”: Gürkan et al.
(2006) address this possibility in the scenario of a run-
away growth of two stars in a young cluster via phys-
ical collisions in the innermost part of the stellar sys-
tem, where the heaviest stars have sunk through mass seg-
regation (Portegies Zwart & McMillan 2000; Gürkan et al.
2004; Portegies Zwart et al. 2004; Freitag et al. 2006). By
adding a fraction of primordial binaries to the cluster,
Gürkan et al. (2006) found not one but two independent
very massive stars growing in the centre. Eventually, and
due to post-Newtonian inestabilities, they could collapse
and form a massive black hole in the relevant mass range.
Amaro-Seoane et al. (2009) followed the evolution of such
a binary with direct-summation N−body simulations and
estimated that, in some cases, one can expect a resid-
ual eccentricity as high as 0.3 for the binary when it en-
ters the LISA band. (2) The “double cluster channel”:
Amaro-Seoane & Freitag (2006) discussed an alternative
way to form binaries of IMBHs in stellar clusters. It has been
observed that in star forming regions such as the Antennæ or
Stephan’s Quintet, hundreds of young massive star clusters
are clustered into larger complexes of a few 100 pc across
(Whitmore et al. 1999; Zhang & Fall 1999; Gallagher et al.
2001). These clusters contain typically some ∼ 105 stars
within a few parsecs and it is most likely that some of them
are bound (Dieball et al. 2002). Also, most of the clusters in
binaries are coeval and younger than 300 Myr, which means
that they merge early. Amaro-Seoane & Freitag (2006) fol-
lowed the evolution of two IMBHs initially located at the
centre of two such clusters which collide, and studied the
orbital decay to the centre.

The evolution of the orbital parameters of the binary of
massive BHs is determined by the stellar dynamics and the
emission of GWs, which is negligible at long distances but
becomes more and more dominant as the semi-major axis of
the binary shrinks. In order to understand the distribution
of parameters we can expect for these systems when they
enter the window of detection of LISA, it is important to
analyse the dynamical story of the binary in detail. The
evolution starting at distances at which dynamical friction
is important down to the phase of strong emission of GWs
–and their detection and characterisation– is a complex and
long process which requires different techniques to address
it.

One can distinguish roughly three different regimes in
the process: (i) at the beginning, the massive BHs are at
distances in which GWs, though always present, are totally
negligible and the evolution is dominated purely by the dy-
namics. At this stage, dynamical friction will sink the two
massive BHs down to the centre. The perturbers, the sin-
gle massive BHs in our case, are moving through a sea of
small stars (as compared to their masses). The velocity vec-

1 http://lisa.nasa.gov/ , http://sci.esa.int/science-e/www/area/index.cfm?fareaid=27

tor of the stars are rotated after deflecting with the IMBHs.
The projected component in the direction of the deflection
is shorter. Hence, the massive object, the IMBH, is cumulat-
ing just after it a high-density stellar region. The perturber
will feel a drag from that region from the conservation of
J in the direction of its velocity vector. The direction does
not change to first-order, but the amplitude decreases A drag
force starts to act on to the perturber, so that it slows downs
as it sinks down to the centre of the stellar system. This force
happens to be proportional the square of the mass of the per-
turber so, the bigger the mass of the perturber, the bigger
the dynamical effects, in spite of the bigger inertia. (ii) As
they approach closer and closer, the two massive BHs form
a bound state, a binary system. At this stage, the binary
interacts strongly with stars coming from the surrounding
stellar system. Since the stars have a much smaller mass,
the outcome of the interaction is that a star is slingshot into
the stellar system with a higher kinetic energy, gained from
the removal of energy and angular momentum of the binary;
therefore, the semi-major axis of the binary, a, shrinks a bit
more. These interactions mostly tend to increase the eccen-
tricity of the binary (iii) The process is repeated again and
again, provided the reservoir of stars is not empty – in which
case the loss-cone would be depleted –, until the separation
between the members of the binary is small enough that
the emission of GWs is strong enough as to take over the
dynamics as the main factor of evolution of the orbital pa-
rameters. The binary is practically isolated from the stellar
system. Thereafter, the binary begins to circularise. Obvi-
ously, the transition between these phases in the evolution is
not well-separated and the whole evolution requires numer-
ical tools to investigate it. Amaro-Seoane & Freitag (2006);
Amaro-Seoane et al. (2009) addressed some of these ques-
tions in the context of globular clusters and IMBHs. They
proved, with N−body models, that slingshot ejections of
stars increase the eccentricity of the IMBH binary to ∼ 0.8
and beyond and that later the emission of GWs then cir-
cularises the orbit to rather low, yet detectable values of
eccentricity.

But Nature is more complex than that. A key effect
that will determine the global evolution of both the cluster
and of the massive binary of IMBHs is the rotation of the
stellar system. Rotation has been identified in clusters for
a long time. Deviations from spherical symmetry were dis-
covered in some globular clusters (Shapley 1930) as early as
the beginning of the last century. This flattening is a finger-
print for rotation and the measurements of ellipticity were
later extended to galactic and extragalactic globular clusters
(see e.g. White & Shawl 1987; Staneva et al. 1996). One can
also detect rotation by measuring radial velocities of indi-
vidual stars in the globular clusters (Meylan & Mayor 1986;
Gebhardt et al. 2000; Reijns et al. 2006).

Amaro-Seoane & Freitag (2006) first addressed this
problem focusing on the detection of GWs in the context
of a binary of IMBH formed as the result of a collision of
two clusters; Amaro-Seoane et al. (2009) looked at the same
problem from the perspective of a born-in binary, extended
the study to multi-mass clusters and non-equal mass bina-
ries and described the global dynamical evolution with the
implication of the larger eccentricities they found in a gen-
eral context of detection.

The role of the eccentricity of the binary is decisive

http://lisa.nasa.gov/
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=27
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in the study. Direct summation N-body models, including
post-Newtonian corrections, show that the stellar dynam-
ical history before the relativistic regime can significantly
affect the final evolution and leads to different merger
times (Berentzen et al. 2009). In particular, it turns out
that massive binaries may enter the relativistic phase with
high eccentricities, and signatures of the eccentricities are
kept in the harmonics of the gravitational waveforms until
the moment of coalescence (Amaro-Seoane & Freitag 2006;
Amaro-Seoane et al. 2009; Berentzen et al. 2009). The
evolution of the eccentricity has been previously discussed
in a number of articles (Makino et al 1993; Hemsendorf
2000; Milosavljević & Merritt 2001; Hemsendorf et al
2002; Berczik et al. 2005; Amaro-Seoane & Freitag
2006; Berczik et al 2006; Amaro-Seoane et al. 2009;
Berentzen et al. 2009).

As derived by Peters (1964), the orbit-averaged
timescale of coalescence due to the emission of gravitational
radiation is given by

tGW =
5

64

c5a4
GW

G3M1M2(M1 +M2)F (e)
(1)

where M1, M2 denote the black hole masses, aGW the char-
acteristic separation for gravitational wave emission, G the
gravitational constant, c the speed of light and

F (e) = (1 − e2)−7/2

„

1 +
73

24
e2 +

37

96
e4
«

(2)

is a function with dependence on the eccentricity e. Thus the
coalescence time can shrink by several orders of magnitude
if the eccentricity is high enough, resulting in a stronger
burst of gravitational radiation and different characteristic
waveforms. Furthermore, the behavior of the the inclination
of the orbital plane is potentially interesting in predicting
processes related to angular momentum exchange between
IMBHs and field stars.

A natural continuation of the analysis carried out until
now is to add another physical factor to the problem, the
rotation of the system, since it can have a very important
impact in the global dynamics of the cluster. It can also
particularly effect the evolution of the eccentricity of the
binary and, thus, the detection and characterisation of the
GW observation.

From a standpoint of the data analysis of such GWs
for LISA, because of their low mass –as compared to SMBH
binaries–, IMBH binaries should be visible at moderate to
high frequencies in the LISA detector. As most of these bina-
ries coalesce outside the LISA band, they will be observable
in the detector throughout the lifetime of the mission. This
should allow us to confidently detect and estimate the pa-
rameters for such systems. If such sources exist in the LISA
data stream, it will also allow us, assuming a strong enough
signal, to provide accurate distance measurements in the lo-
cal universe.

The stucture of this paper is as follows: We start by
giving a description of the numerical method used for the
simulations in section (2); later, in section (3) we give a short
overview of the initial conditions we use for the numerical
study; in section (4) we provide a detailed analysis of the dy-
namics of the system, i.e. evolution of the binding energy, ec-

centricity and inclination of the IMBH binary; in section (5)
we study some cases in which the binary is initially set up
on a counter-rotating orbit in relation to the stellar system
in which it is embedded and study the associated Brownian
motion; in section (7) we dicuss about the implications for
lower-frequency Astrophysics and the detectability of such
systems. In the last section (8) we summarise the results and
give the conclusions of the study.

2 NUMERICAL METHOD

The simulations in this work have been performed using
NBODY6++, a parallelised version of Aarseth’s NBODY6
(Spurzem 1999). The code includes a Hermite integration
scheme, KS-regularisation (Kustaanheimo & Stiefel 1965)
and the Ahmad-Cohen neighbour scheme (Ahmad & Cohen
1973). No softening has been introduced; this circumstance
allows an accurate treatment of the effects due to super-
elastic scattering events, which play a crucial part in black
hole binary evolution and require a precise calculation of the
trajectories throughout the interaction.

Additionally, in order to improve the exactness of com-
putation of the motion of particles in the environment of
the black holes, a modification in the determination of the
neighbour radius in the Ahmad-Cohen scheme was imple-
mented. In principle, the Ahmad-Cohen scheme divides the
force on a particle into a regular and an irregular component,
assigning both forces different time steps; the irregular com-
ponent is computed over the nearest particles populating an
area called the neighbour sphere. Normally, the neighbour
sphere, which is in its extension defined by the neighbour ra-
dius, is characterised as containing a defined number of stars
nn, which is typically set to nn = 50 in simulations dealing
with particle numbers of the order presented here. However,
when considering a scenario consisting of two heavy parti-
cles of the same mass, embedded in a stellar component of
equal-mass particles, the neighbour radius is enlarged by a
factor

γ = β

"

„

1

2

„

mi

mj
+
mj

mi

««λ

− 1

#

+ 1 (3)

if during the declaration of the neighbour particles of a par-
ticle j and the neighbour candidates i a mass difference
mi/mj 6= 1 occurs (Hemsendorf 2000). The enlargement fac-
tor γ is symmetric in the masses mi and mj . As a result,
massive particles (black holes) receive a larger neighbour ra-
dius, and a massive particle is also more likely declared as
neighbour of a stellar particle. This method accommodates
the influence of a black hole on its surroundings and lessens
the underestimation on that stellar component which pos-
sessed a black hole nearby, but outside the neighbour sphere
in the scheme without the enlargement factor. The param-
eters β and λ have been set β = 0.03 and λ = 1, yield-
ing γ = 10.57, consistent with the simulations presented by
Hemsendorf et al (2002).
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Set Model W0 ω0 v0 rc vc Trot/Tkin

A 3 0.0
√

2vc 0.396 0.552 0
1 B 3 0.0 vc 0.396 0.552 0

C 3 0.0 0.136vc 0.396 0.552 0

D 3 0.3
√

2vc 0.400 0.558 0.01
2 E 3 0.3 vc 0.400 0.558 0.01

F 3 0.3 0.136vc 0.400 0.558 0.01

G 3 0.6
√

2vc 0.415 0.555 0.0343
3 H 3 0.6 vc 0.415 0.555 0.0343

I 3 0.6 0.136vc 0.415 0.555 0.0343

J 6 0.0
√

2vc 0.239 0.563 0
4 K 6 0.0 vc 0.239 0.563 0

L 6 0.0 0.136vc 0.239 0.563 0

M 6 0.3
√

2vc 0.256 0.553 7
5 N 6 0.3 vc 0.256 0.553 7

O 6 0.3 0.136vc 0.256 0.553 7

6 P 6 0.6 vc 0.320 0.550 19.81
Q 6 0.6 0.136vc 0.320 0.550 19.81

Table 1. Overview over the initial conditions of all simulations.
All values are expressed in N-body units. W0 is the King pa-
rameter, ω0 the rotation parameter, v0 the initial velocity of the
IMBHs, rc the core radius, vc the central velocity and Trot/Tkin

is the ratio of rotational energy and total kinetic energy at time
T = 0. We use γ = γ3, β = 0.03, λ = 1.0. In all simulations
ηreg = 0.02, whilst ηirreg = 0.02 for the cases A− I and 0.01 for
the cases J −Q

3 INITIAL CONDITIONS

In all our simulations, the conversion factors are as follows: A
unit of length is equivalent to U|NB

L = 1.1 pc, a unit of mass
to U|NB

M = 43921.6M⊙ , a unit of velocity to U|NB
V = 13.233

km/s and a unit of time to U|NB
M = 8.14 ·10−2 Myrs. The set

of simulations was carried out for a total particle number
N = 64000, including two massive black holes M1 = M2 =
0.01 embedded in a dense stellar system of 63998 equal-
mass particles m⋆ = 1.5625 · 10−5 U|NB

M . The initial stellar
distribution satisfies a rotating King model,

f(E,Lz) =

(

const ×
“

e−β(E−Φt) − 1
”

eβΩcLz E < Φt

0 E > Φt

(4)
where β = 1/σ2 represents the inverse one-dimensional ve-
locity dispersion, E and Lz the energy and the z-component
of the angular momentum of a star per unit mass, and
Φt the tidal potential of the model. The King parameters
W0 and ω0 are defined by W0 = −β(Φ0 − Φt) and ω0 =
p

9/4πGρc · Ωc with the parameters Φ0 representing the
central potential, ρc a mass density and Ωc approximately
the angular velocity in the centre (Einsel & Spurzem 1999;
Lagoute & Longaretti 1996; Longaretti & Lagoute 1996).

A symmetric set-up underlies all simulations, with the
rotation axis of the King model in the z-direction and the
two black holes located in the xy-plane on the opposite side
of the cluster on the core radius rc of the model. Thereby,
the usual definition of the core radius in N-body simulations,

rc =

 

N∗

X

j=1

ρ2
j |rj − rd|2/

N∗

X

j=1

ρ2
j

!1/2

N∗
> N/5, (5)

is used (Aarseth 2003), where rd =
PN

j=1 ρjrj/
PN

j=1 ρj

is the density centre of the system consisting of particles
of the mass m with the coordinates rj , and ρj = 3(k −
1)m/4πr3j(k) the local density in an area around each par-
ticle j (Casertano & Hut 1985). The quantity rj(k) is to be
interpreted as the radius of the sphere over which the lo-
cal density is evaluated, characterised in size by the number
of stars k populating this volume. Applying this formalism,
k = 6 is the optimal choice. The summation in equation
5 is restricted to the innermost N/5 particles, which saves
computation time while showing coevally adequate agree-
ment with an exact calculations. The initial velocities are
adjusted in the xy-plane tangential to a circle around the
centre, adopting the values v0 = 0.136vc , vc and

√
2vc in

terms of the circular velocity vc. Scenarios with the black
holes moving initially with, as well as contrary to, the rota-
tion of the stellar system have been investigated.

The evolution of the black hole binary was followed us-
ing King parameters W0 = 3; 6 and ω0 = 0.0; 0.3; 0.6. We
have chosen these parameters because they are representa-
tive for the problem we want to address in this work, from
the absence of rotation to a rather high value. Typical val-
ues for ω0 in globular clusters range between 0.1 and 0.5.
For instance, ωCen has a value of 0.5, N2808 of 0.3, 47Tuc
of 0.15, N5286 of 0.5 etc (Fiestas et al 2006).

The accuracy was tuned in such a way that relative en-
ergy errors measured over one NBODY time were < 10−3

concerning W0 = 3 and < 10−4 concerning W0 = 6 simula-
tions respectively. The complete survey of investigations is
shown in Tab.1.

4 DYNAMICS OF THE SYSTEM

4.1 Evolution of the binding energy

The total energy of the binary in a two-body approximation
is given by

E =
µ

2
ṙ2 +

l2

2µr2
− GM1M2

r
(6)

where r denotes their separation, M1 and M2 the black hole
masses, µ = M1M2/(M1 + M2) the reduced mass, l the
angular momentum and G the gravitational constant.

Fig. 1 shows the time evolution of the total energy. In
both cases, the initial velocity is v0 = 0.136vc on the core ra-
dius, different colours represent different rotational param-
eters. Naturally, as long as the gravitational force of the
stellar system dominates the motion of the black holes, the
two-body energy is not very meaningful. Initial oscillations
are the result of this invalidity: Due to the symmetric set-up
both black holes reach the apoapsis and the periapsis almost
simultaneously, in the apoapsis (where their separation is at
maximum, which consequently means a local minimum in
the total energy) the black holes are formally bound to each
other (E < 0). However, they feel the potential of the stellar
system not included in eq.6 and are accelerated to the centre
while gathering kinetic energy in such a way that the bound
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Figure 1. Left panel: Evolution of the total energy of the IBMH binary for the models I, F and C (from the top to the bottom at later
times; in the on-line version of the paper displayed in blue, green and red respectively) Right panel: As in the previous panel, for models
Q, O and L
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√

2vc, v0 = vc and v0 = 0.136vc,
depicted in the on-line version in red, green and blue, respectively) Right panel: As in the previous panel but with W0 = 6, for models
M, N and O

Model σ2
0

n0

103

1
ah

H

C 0.526 41.06 210 7.8±2.0

F 0.522 43.53 209 7.2±1.9

J 0.478 117.12 191 5.2±1.3
K 0.478 117.12 191 5.6±1.5
L 0.478 117.12 191 6.1±1.6

N 0.468 108.04 187 5.8±1.5
O 0.468 108.04 187 6.8±1.7

Q 0.425 64.79 170 10.4±2.7

Table 2. The hardening constants determined in simulations for
a variety of models and initial conditions. σ0 represents the initial
central velocity dispersion, n0 the initial central particle density,
ah the characteristic separation for hardening via super-elastic
scattering processes and H the hardening constant.

state is resolved. In this first stage, each black hole individ-
ually suffers dynamical friction, which is the main process
of losing energy.

The role of dynamical friction decreases when a per-
manently bound state occurs (the energy remains negative),
as the dynamical friction force acts primarily on the mo-
tion of the now formed binary rather than on the individual
black holes. Super-elastic scattering events of field stars at
the binary become more and more important for the reduc-
tion of its energy. These events become visible in the tiny-

peak structure that appears in each curve in Fig.1 at times
t & 17 for W0 = 3 and t & 8 for W0 = 6 respectively. In the
stage where super-elastic scattering dominates the picture,
the energy loss rate is commonly written in terms of the
dimensionless hardening constant H

d

dt

„

1

a

«

= HG
ρ

σ
(7)

where a is the separation of the black holes, ρ the mass
density and σ the velocity dispersion in the environment of
the binary (see e.g. Merritt 2001). The constant slope of the
energy in Fig.1 is expected from eq.7 with ρ/σ =const.

In Tab.2, hardening constants have been determined for
scenarios in which a constant energy loss rate had developed
before the simulation ended. The time derivative of the in-
verse separation was taken from the slope of the curves in
Fig.1, which is connected to the energy by E = −Gµ/2a.
Approximately, σ/ρ = σ0/ρ0 was assumed with ρ0 and σ0

as initial values within the 1% Lagrangian radius of the
model. As this represents a rather vague approximation, a
25% range of this ratio was combined with an regression
estimate of the uncertainties in slope designation to obtain
the error margins.

Since the stage which is dominated by superelastic scat-
tering is reached sooner if the central potential of the stellar
distribution is deeper, the hardening constants have been
calculated primarily for runs with W0 = 6 in Table 2. For
these runs, the separation of the IMBHs has fallen below
the characteristic separation ah = GM/4σ2

0 at the end of
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the simulation, which indicates that the system is in the
hardening regime.

The values of the hardening constants are in major-
ity slightly below compared to the H = 8.4 published by
Hemsendorf et al (2002), where a Plummer model was used.
The lower values can be possibly explained by the fact that
dynamical friction might still have a noticeable influence.
Regarding our calculated ah as criteria for the domination
of super-elastic scattering events, the hardening separation
could be significantly smaller if σ increases during the sim-
ulation as ah ∝ σ−2. An enhanced σ can be expected for
ρ/σ =const. if it is assumed that the black hole would cap-
ture stars during the simulation and raise the central density.

We can see in Fig. 1 that King potentials of W0 = 3 as
well as W0 = 6 the two-body energy reaches higher values
(i.e. the system is less bound) at a given time for ω0 = 0.6,
as compared to the simulations with ω0 = 0.0 and ω0 = 0.3.
Additionally, we find that in the presence of faster rotation
ω0 = 0.6, the transfer of angular momentum to the field stars
is inhibited during the first 2–4 time units. This can lead to
the circularising of the IMBHs trajectories and, indeed, we
find remarkable smaller eccentricities for this case (see Fig
6 of next section).

Variation of the initial velocities is presented in Fig.2.
In simulations with v0 = vc, no oscillations occur in the first
time units, as the black holes spiral to the centre symmetri-
cally on circular-like orbits.

4.2 Eccentricity

The eccentricity is determined by

e =

s

1 +
2El2

µ(GM1M2)2
(8)

Fig.3 shows the complete survey over calculated eccen-
tricity evolution. Each plot shows simulations of a fixed pair
of King parameters under variation of the initial velocity.
In the case of W0 = 6, ω0 = 0.6, no simulation could be
performed with v0 =

√
2vc without overstepping the error

limits mentioned in section 3 holding the set of NBODY
accuracy parameters. The runs were stopped when a fixed
physical calculation time of the PC cluster was exceeded.

Initial oscillations appear for the same reasons as in
the plots of the total energy previously discussed. After the
binary has been formed, and in principle represents a two
body system perturbed by encountering field stars, the ec-
centricity converges to a fixed value that underlies at most a
weak drift. This behaviour is consistent with previous work
(Hemsendorf 2000; Hemsendorf et al 2002). When the ec-
centricity has swung into a certain level, again a tiny-peak
structure develops as the result of super-elastic scattering
processes of field stars at the hardening binary. Note that
following the swing-in-procedure, the stochastic fluctuations
are of the same order, due to the logarithmic scaling.

All simulations displayed in Figure 3 with an initial ve-
locity comparable to the circular velocity, tend to end up in
low-eccentricity motions of the black hole components, while
v0 = 0.136vc runs reach generally higher final eccentrici-
ties. This behaviour was already indicated by Makino et al
(1993), who simulated two black holes of the masses M =
0.01 in a Plummer sphere of 16348 particles. They found

very high final eccentricities e ∼ 0.99 applying very low ini-
tial velocities, while their largest value, v0 = 0.5vc, reached
a noticeably smaller final e ∼ 0.665. Investigations carried
out by Hemsendorf (2000) and Hemsendorf et al (2002) used
initial velocities v0 = 0.136vc , their high eccentricities were
verified in the simulations presented here for the rotating
King model.

The dependency of the final eccentricity on initial veloc-
ities can be understood by considering the black hole trajec-
tories. In Fig. 4, for v0 = vc, the black holes spiral, at first
independently of each other, to the centre. The influence
of dynamical friction causes a steady loss of kinetic energy.
Within the time interval t = [10.11; 20.14], the total energy
becomes negative and the binary reaches a bound state; sub-
sequently the binary hardens, the separation decreases due
to super-elastic scattering events and the circular motion of
the centre of mass of the binary itself becomes visible. At the
time the attractive force between the black holes becomes
comparable to the gravitational force of the stellar distribu-
tion, the individual trajectories of the black holes are still
circular around the systems centre of mass. This means that
the circular orbits generated by the initial velocity is ”con-
served” until the binary reaches a bound state and beyond,
since dynamical friction is not strong enough to change the
trajectories dramatically.

A different situation is obtained for v0 = 0.136 vc. As a
consequence of the low velocity, the black holes must plunge
near to the centre, but dynamical friction is, at the time of
the closest encounter (the periapsis of the relative motion),
not sufficiently effective to prevent the re-swing to the outer
regions and to circularise the orbits in this way. Therefore,
the initial form of the orbits is kept until the end of the sim-
ulation. The initial velocity v0 =

√
2 vc is also non-circular.

The deviations from the previous case are due to the fact
that dynamical friction is stronger at apoapsis.

Tab. 3 summarises the results of the complete study.
The mean values of the eccentricity ē, the error of the single
value se and the error of the mean value sē have been calcu-
lated over time intervals in which the eccentricity remains
stable, and are based on output data of a step-width of 0.002
N-body units. The quantity etrans represents a mean value of
the eccentricity in a period the total energy snaps of into the
stage of constant energy loss. Although the the eccentricity
still undergoes vigorous fluctuations at that time, this tran-
sition mean value etrans does not evidently differ from the
ē. It is remarkable that eccentricity develops in a dynamical
friction dominated period. The strength of the dynamical
friction force along the trajectory of the black holes is cru-
cial whether the individual motion determined by the initial
velocities can be kept until the binary forms.

The existence of drifts in eccentricity was reported in
previous papers (see introduction). This behaviour can be
connected to the effect of super-elastic scattering events.
Although the effect of super-elastic scatterings on the ec-
centricity during the formation of the binary may be only
weak, the long term evolution might increase the eccentricity
significantly. However, the question, whether the eccentric-
ity is ultimately increased or decreased, cannot be solved
here since the simulations includes both rising and declin-
ing drifts, as seen for W0 = 6, ω0 = 0.0 with v0 = vc and
v0 =

√
2vc (Fig.3, for example. If superelastic scattering
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Figure 3. Evolution of the eccentricity of the IMBH binary for the complete survey. Starting from the top and from the left to the
right, we display in each panel only three models for readability. In each individual panel, and from the top to the bottom at t = 0, we
show (in red, green and blue in the on-line version): A, B, C in the first panel, J , K, L in the second one, D, E, F in the third one, M,
N , O in the fourth one, G, H, I in the fifth one and P, Q in the last one

should actually increase the eccentricity in long-term evolu-
tion, another effect overlays the simulations in that period.

We depict in Fig. 6 the cases F , C, I, O, L and Q of
Fig. 3 together in order to illustrate clearly the influence of
rotation on the development of eccentricity. With a rotation
parameter ω0 = 0.6, the end value of eccentricity drops sig-
nificantly for W0 = 3 as well as for W0 = 6. In the case of
W0 = 3, ω0 = 0.6, no effective transfer of angular momen-
tum to the field stars takes place until t ∼ 5, with W0 = 6,
ω0 = 0.6 till t ∼ 2, thus the trajectories of the IMBHs ex-
perience a noticeable truncation in the co-rotating stellar
system at the beginning, which finally results in low eccen-
tricities.

4.3 Inclination and angular momentum

orientation

The direction of the orbital angular momentum vector of
the binary is specified by the quantities

cos i = l · êz/l 0 6 i < π (9)

and



cos Ω = K · êx/K K 6= 0
Ω = 0 K = 0

0 6 Ω < 2π (10)

where êx and êz are the unit vectors of the reference co-
ordinate system and K the vector in the direction of the
ascending node, K = êz × l, which represents the definition
of the inclination i and the longitude of the ascending node
Ω following classical celestial mechanics.

The left side of Fig. 7 shows the evolution of the incli-
nation for W0 = 6 and ω0 = 0.6 for different initial veloci-
ties. The inclination, typically in all simulations undergoes
comparatively strong changes during the dynamical friction
dominated regime, and remains passably stable or slightly
drifting during the hardening stage. Nevertheless, the total
changes of the inclination angle considering the whole simu-
lation are rather small. Sometimes a monotonic increase of
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Figure 4. Projection in the X–Y plane of the trajectories of the two IMBHs in the model E (different colours depict different IMBHs).
Solid lines indicate the trajectories passed through in the time interval mentioned above each figure; the dotted lines show the previous
orbit. Note the scaling of the axes in different figures; the two lower panels are a zoom in

the inclination angle occurs during the dynamical friction
dominated stage, and there were also simulations in which
the inclination dropped before reaching stable behaviour.
This can be seen in Tab. 4, where the maximum inclination
imax and the mean value seen in the stable phase ī of each
simulation are listed: imax and ī can differ considerably.

In the right side of Fig. 7, the direction of the orbital
angular momentum vector is illustrated using polar repre-
sentation (i cos Ω, i sin Ω). The (0, 0) coordinate corresponds

to a rotation of the binary in the xy-reference plane. The ex-
tensive ripples are the result of periodic motion before the
binary is bound or when the binding is weak. With progress-
ing evolution, the system concentrates in confined cloud-like
areas. The measured changes of direction of the orbital an-
gular momentum vector are consistent in order of magnitude
with the simulations of Milosavljević & Merritt (2001), with
the exception of the inclination maverick W0 = 6, ω0 = 0.0,
v0 = 0.136vc.
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Figure 5. the same as in Fig.4, but for model F

5 COUNTER ROTATION

Applying exactly the same initial model for the field stars of
the corresponding model, the initial velocities of the IMBHs
were set contrary the rotation of the stellar system for the
models O and N .

The distinct influence of dynamical friction during the
the first time intervals is responsible for different results
in eccentricity evolution compared to the co-rotating sim-
ulation (Fig. 8). In the case of v0 = 0.136vc, for counter-
rotation an extremely high eccentricity ē = 0, 997 is reached

(ē = 0, 728 for co-rotating). In this scenario, the relative ve-
locity between a black hole and the field stars is increased at
the apoapsis as well as at the periapsis. Dynamical friction
is very efficient at the apoapsis of the individual black hole
motion in the unbound regime. Thus the black holes suffer a
strong energy loss and fall steeper to the centre than in the
co-rotating simulation. The resulting high eccentric motion
is kept into the bound state. Applying an initial velocity
v0 = vc, a higher eccentricity ē = 0.160 occurs compared to
the co-rotating ē = 0.039, but remains on a low level.
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Figure 6. Influence of rotation on final eccentricities. Left panel: King W0 = 3, models F , C and I in green, red and blue, respectively.
Right panel: King W0 = 6, models O, L and Q in green, red and blue, respectively. The colours indicate the different rotation parameters
used in the simulations: ω0 = 0.0 red, ω0 = 0.3 green, ω0 = 0.6 blue

Set Model tstab ē eend sē se ētrans

A 40 0.0812 [41.00;52.15] 0.0930 0.0002 0.0153 0.13 [26.4;32.7]
1 B 34 0.1212 [35.00;40.33] 0.1069 0.0002 0.0102 0.29 [25.1;28.8]

C 13 0.7272 [35.00;36.73] 0.7146 0.0002 0.0047 0.72 [14.7;18.0]

D ? 0.1447 [35.00;38.96] 0.1512 0.0008 0.0348 0.14 [28.2;34.7]
2 E 35? 0.1239 [35.00;38.00] 0.1586 0.0005 0.0197 0.12 [24.9;32.4]

F 15 0.7135 [33.00] 0.7135 - - 0.72 [13.3;16.9]

G 46? 0.1714 [40.00;56.00] 0.2204 0.0005 0.0462 0.15 [32.8;42.0]
3 H 38 0.1206 [38.00;53.15] 0.1184 0.0003 0.0261 0.14 [23.0;29.4]

I 19 0.4497 [22.00] 0.4497 - - 0.50 [14.9;18.9]

J 15 0.1369 [22.00;30.46] 0.1349 0.0003 0.0170 0.25 [8.3;11.6]
4 K 14 0.2517 [22.00;28.84] 0.2607 0.0004 0.0228 0.13 [7.1;9.4]

L 3 0.9116 [22.00;25.41] 0.9359 0.0003 0.0127 0.90 [5.7;7.6]

M ? 0.1558 [18.38] 0.1558 - - 0.26 [12.1;14.1]
5 N 16 0.0387 [22.00;30.58] 0.0878 0.0003 0.0191 0.19 [8.8;11.6]

O 5 0.7276 [12.95] 0.7276 - - 0.71 [5.8;7.0]

P 22 0.0914 [25.00;26.47] 0.0813 0.0003 0.0073 0.07 [12.1;16.0]
6 Q 13 0.1534 [25.00;27.90] 0.1599 0.0002 0.0075 0.25 [6.7;8.3]

Table 3. Compiled data of eccentricity evolution for the the complete set of simulations. tstab represents the time when the eccentricity
remains passably constant, ē is the average eccentricity measured over the time interval mentioned below, eend the value at the end of
the simulation. Disregarding appearing drifts, errors were calculated based on an 0.002 step-width output considering the same time
intervals; se is the error of the single value and ētrans the error of the mean value eccentricity. ētrans is an average eccentricity over the
epoch when the system turns to a constant energy loss rate

6 BROWNIAN MOTION

The centre of mass (CM) of a hardened binary is expected
to to perform an irregular motion in the central region of the
stellar system. This motion is often described by the concept
of Brownian motion, as it is characterised by a friction force
(dynamical friction) and a fluctuating force (as the result of
scattering events and encounters of field stars). Applying en-
ergy equipartition in thermodynamic equilibrium, the mean
square velocity of the CM of the binary 〈v2

CM〉 is connected
to the mean square velocity of the central field stars 〈v2

∗〉 by

〈v2
CM〉 =

m⋆

M2BH
〈v2

∗〉 (11)

where M2BH is the sum of the black hole masses.

However, the irregular motion of the CM is to be dis-
tinguished from the movement of a single massive particle
since the binding energy of the binary changes due to (super-
elastic) scattering events. The characteristics of the Brow-
nian motion of a massive black hole binary have been dis-
cussed in detail by Merritt (2001), where 〈v2

CM〉 is expected
to be increased by a factor . 2, allowing for the higher re-
coil velocities of a binary after super-elastic scattering of
field stars and for the decreased dynamical friction force on
the CM, since the trajectories of the field stars are randomly
orientated in direction after such a process.

The CM motion was investigated for a series of King pa-
rameters. Fig.9 displays the CM movement during the whole
simulation time for King potential W0 = 6, applying rota-
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Figure 8. Left panel: Influence of rotation and counter-rotation on the evolution of the eccentricity of the IMBHs. The upper curve (at
later times, green in the on-line version of the article) corresponds to model O, for IMBHs initially set up to be counter-rotating; the
lower curve (red colour) is the same model with co-rotation of the IMBHs. Right panel: Same-same for model N

tion parameters ω0 = 0.0 and ω0 = 0.6, both with an initial
IMBH velocity v0 = 0.136vc. A color gradient plot of the
CM trajectory has been used to give an impression of the
temporal evolution. In the absence of rotation ω0 = 0.0, the
characteristics of an rather irregular motion appears, while
with rotation ω0 = 0.6, a turning motion of the CM oc-
curs. This motion seems to follow the rotation of the stellar
system.

Elevated values of the CM mean velocity were found
in all simulations, quantified by the ratio 〈v2

CM〉/〈v2
equ〉 with

〈v2
equ〉 = (m⋆/M2BH)σ2

0 . The results of three simulations are
shown in Tab.5. The postulated factor . 2 is manifestly
exceeded even without rotation, but may be smaller if a a
change of the central stellar velocity dispersion σ is taken
into account, while calculations here are based on the ini-
tial value σ0 within the 1% Lagrangian radius of the stellar
model. Nevertheless, a time evolution of the mean square
velocity indicated that a constant value was not yet reached

at the end of the simulations but may have grown larger if
runs had been continued.

7 GRAVITATIONAL WAVES:

DETECTABILITY OF THE SYSTEMS WITH

LISA

7.1 Post evolution of the binary of IMBHs

The advantage of direct-summation codes, accuracy, is at
the price of performance. We have chosen N−body in or-
der to investigate this problem but in order to analyse
the ulterior evolution of the binary down to a GW fre-
quency observable by LISA, we have to resort to alterna-
tive schemes. If we were to integrate the binary system un-
til the orbital period of the binary is within the range of
observations of LISA, we would have to leave the simula-
tions running for months. This is not desirable for obvious
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Figure 10. Inspiral of the IMBH binary of Models C,F ,L and O from the top to the bottom and from the left to the right. We show
in this figure the evolution of the binary in the eccentricity–semi-major axis plane. The zigzag curves (red in the on-line version) depict
the results of the N−body simulations. Initially the IMBHs do not constitute a bound system and therefore the eccentricity of the
system is ill-defined, as explained at the beginning of Section (4.1). This is causing the initial values of e become > 1. We then make a
semi-analytical expansion of the evolution starting from the last point in the numerical simulations (dot-dashed curve, magenta in the
on-line version of the paper) by taking into accound the Physical propierties of the system at that moment: semi-major axis, eccentricity,
velocity dispersion of the stellar system and stellar density, as shown in Table 6. Thus, we evolve the binaries until they enter the LISA
bandwidth, which we depict as a lightly shaded area (orange in the on-line version). The black solid curves correspond to the trajectories
due only to the emission of GWs (Peters 1964) and we additionally show the corresponding inspiral tGW for 1010 yrs, 109 yrs etc. As
shown in (Amaro-Seoane & Freitag 2006), one recovers partially the N−body results with the semi-analytical approach if one starts at
a previous point in the curve corresponding to the numerical simulation. The black-shaded region on the right corresponds to the last
stable circular orbit.

reasons. Instead, we recur to a semi-analytical method to
evolve the orbital elements of the binary taking into ac-
count the dynamics and the GW emission of the system, as
introduced in Amaro-Seoane & Freitag (2006): we stop the
direct-summation calculation after the initial strong fluctu-

ating phase; when the eccentricity achieves a steady value.
In order to locate in the LISA bandwidth the position of the
binary, we employ the results of the direct-summation simu-
lation and extend them with a semi-analytical method. The
dynamics will, in general, tend to increase the eccentricity,
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Model imax ī

A 0.191 [37.151] 0.14 [32.7;52.2]
B 0.360 [19.275] 0.27 [28.8;40.3]
C 0.362 [3.316] 0.23 [18.0;36.7]

D 0.271 [18.557] 0.04 [34.7;39.0]
E 0.289 [12.836] 0.21 [32.4;38.0]
F 0.352 [3.329] 0.07 [16.9;33.0]

G 0.189 [24.961] 0.14 [42.0;56.0]
H 0.201 [23.056] 0.13 [29.4;53.2]
I 0.344 [1.686] 0.12 [18.9;22.0]

J 0.316 [15.869] 0.24 [11.6;30.5]d
K 0.252 [7.138] 0.18 [9.4;28.8]
L 0.867 [20.895] 0.72 [7.6;25.4]

M 0.349 [11.120] 0.24 [14.1;18.4]
N 0.178 [9.546] 0.07 [11.6;30.6]
O 0.492 [5.202] 0.42 [7.0;13.0]

P 0.184 [26.423] 0.15 [16.0;26.5]
Q 0.158 [10.150] 0.09 [8.3;27.9]d

Table 4. Inclination characteristics regarding all simulations.
imax denotes the maximum value at the mentioned time unit, ī
is the mean value over the mentioned time interval, which ranges
from the time unit when a constant energy loss rate occurs until
the end of the simulation. The mean values are calculated despite
some runs showing drift, in which case they are indicated with a
”d”.

Model 〈v2
CM〉 〈v2

equ〉 〈v2
CM〉/〈v2

equ〉

L 1.33 · 10−3 3.73 · 10−4 3.5
N 2.79 · 10−3 3.66 · 10−4 7.6
Q 2.18 · 10−3 3.32 · 10−4 6.6

Table 5. Mean square velocities for the CM of the binary 〈v2
CM〉

compared to the equilibrium mean square velocity 〈v2
equ〉 of a

single particle, for some simulations. The 〈v2
CM〉 were calculated

over the blue epochs of section (9) and over [11.60;30.58] in the
case W0 = 6, ω0 = 0.3, v0 = vc.

whilst the emission of GWs circularies the orbit. These two
processes are competitive. The basic idea to further evolve
the binary is to split the evolution of both the semi-major
axis and the eccentricity in two contributions, one driven by
the dynamical interactions with stars (subscript dyn) and
another by the emission of GWs (subscript GW),

da

dt
=

„

da

dt

«

dyn

+

„

da

dt

«

GW

,
de

dt
=

„

de

dt

«

dyn

+

„

de

dt

«

GW

(12)
The GW terms are as given by the approach used in Peters
(1964). As for the dynamical part, we resort to the scheme
described in Quinlan (1996). For more details about this
approach, see Section 3 of Amaro-Seoane & Freitag (2006).

In Fig.(10) we depict the results of this approach for
the models C,F ,L and O. We have chosen them for being
the most interesting ones from a dynamical point of view,
since they have the largest eccentricities by the moment of
entrance in the observatory’s sensitivity window. Also, from
the standpoint of detectability, these are the most challeng-

ing ones due to the same reason. We can see that in all four
models the binary of IMBHs enters the bandwith with a
residual eccentricity which, even if rather mild, is not negli-
gible, from the point of view of detection.

7.2 Event rates

Fregeau et al. (2006) estimated the detection of binary
IMBHs by LISA for the single cluster channel. They assumed
that any cluster undergoing a collisional runaway, such as
those found in the Monte Carlo numerical simulations of
Gürkan et al. (2006), form a two very massive stars. These
evolve separately and eventually may collapse and build two
IMBHs separately, so that the IMBHs do not coalesce in the
process of their formation, but are born independently.

Amaro-Seoane & Freitag (2006) calculated the event
rate for formation of binaries of IMBHs based on the results
of Fregeau et al. (2006) in the scenario of two colliding clus-
ters, the double cluster channel (see their Section 4, also for
a more detailed explanation of the following events). Their
work assumed that the IMBHs were already present at the
centres of the two clusters undergoing the crash. When the
two clusters merge, the IMBHs are drawn to the centre due
to dynamical friction and constitute a binary which even-
tually coalesce. The difference in the calculation of event
rates of Amaro-Seoane & Freitag (2006) and Fregeau et al.
(2006) is the number of IMBHs formed per cluster and the
requirement for the host clusters to merge.

In both estimations, the probability that a cluster
evolves to the runaway phase was set to 0.1 as an illus-
trative case, though it can be as high as 0.5 (Freitag et al.
2006b). Both works assumed that a runaway always leads to
the formation of an IMBH. We refer the reader to Section 4
of Amaro-Seoane & Freitag (2006) and Fregeau et al. (2006)
for a detailed explanation and exposition of the uncertainties
in the calculations. To summarise, the Fregeau et al. (2006)
results for the LISA detector are

ΓFreg|opt ∈ [200, 250] yr−1 (13)

ΓFreg|pes ∈ [40, 50] yr−1.

Where the subscript “Freg” stands for Fregeau et al. (2006),
the subscript“opt” for the optimistic estimation, assum-
ing that the probability for a cluster evolving to the
runaway stage is 0.5, and the subscript “pes” stands
for pesimistic, which is the result of using 0.1 instead.
Amaro-Seoane & Freitag (2006) find the following results,
where we use a nomenclature similar as above and set the
probability for the host clusters to merge to 1 (these would
decrease by a factor 10 if one was to use 0.1 instead, see
discussion about the “UCDG channel” in their work)

ΓASF|opt ∈ [100, 125] yr−1 (14)

ΓASF|pes ∈ [4, 5] yr−1.

So that the contribution to the total number of binaries of
IMBHs from both channels is

Γtot|opt ∈ [300, 375] yr−1 (15)

Γtot|pes ∈ [44, 55] yr−1
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Simulation Time Rc N σ2
R σ2

T σtot n m̄ ρ ρ∗ σtot*

C 36.0 0.376 7778 0.255 0.304 0.929 34878.9 1.82 ∗ 10−5 0.635 0.544 0.860
F 33.0 0.376 7627 0.253 0.261 0.880 34201.8 1.82 ∗ 10−5 0.622 0.534 0.943
L 25.0 0.216 4209 0.476 0.782 1.428 99739.3 2.03 ∗ 10−5 2.025 1.555 1.575
O 12.0 0.223 4270 0.383 0.265 0.956 91828.0 2.03 ∗ 10−5 1.864 1.433 0.967

Table 6. All values are given in N−body units. In the table Rc is the core radius, N the number of stars within the core radius, including

the two IMBHs, σ2
R the radial velocity dispersion (squared), σ2

T the tangetial velocity dispersion (squared, 1D), σtot =
q

σ2
R + 2σ2

T the

velocity dispersion (3D, including IMBHs), n the particle density within the core radius (including IMBHs), m̄ the average particle mass
within the core radius (including IMBHs), ρ the average mass density within the core radius (including IMBHs), ρ∗ the average mass
density within the core radius (excluding IMBHs), σtot∗ the velocity dispersion within the core radius (3D, excluding 2BH)

Or, in the unlikely very pesimistic situation of having the
host clusters to merge with a 0.1 probability, we have the fol-
lowing “optimistic–pesimistic” and “pesimistic–pesimistic”
results

Γtot|pes
opt ∈ [210, 262.5] yr−1 (16)

Γtot|pes
pes ∈ [40.4, 50.5] yr−1

These results are encouraging enough that we address
the parameter estimation of the sources. We describe the
methods and results in the next sections.

7.3 The gravitational waveform

To investigate the detectability of these sources for LISA,
we use the restricted post-Newtonian (PN) approximation
for the GW, where we assume 2-PN corrections to both the
conservative and adiabatic dynamics of the system, but con-
serve the amplitude at the dominant Newtonian order. With
this in mind, the waveform polarisations for non-spinning
eccentric binaries at the detector are given by (in units of
G = c = 1) (Damour et al (2004))

h+(t) =
Mη

DL
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„
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(17)

h×(t) = −2Mη

DL
cos ι

„

−ṙ2 + r2ϕ̇2 +
M

r

«

sin 2ϕ

− 2r ṙ ϕ̇ cos 2ϕ

ff

, (18)

where cos ι = L̂·n̂. Here, L̂ is the direction of the binary’s or-
bital angular momentum and n̂ is the direction from the ob-
server to the source (such that the GWs propagate in the −n̂

direction).M is the total mass of the system, η = M1M2/M
2

is the symmetric mass ratio and DL is the luminosity dis-
tance to the source . The components (r,ϕ) denote the or-
bital radius and phase of the system (also referred to as
the true anomaly), and are schematically described by the
equations (Hinder et al (2008))

r/M = r0PNx
−1 + r1PN + r2PNx+ O(x2) (19)

Mφ̇ = φ̇0PNx
3/2 + φ̇1PNx

5/2 + φ̇2PNx
7/2 + O(x9/2) (20)

l = l2PN + l2PNx
2 + O(x3) (21)

Ml̇ = Mn = x3/2 + l̇1PNx
5/2 + l̇2PNx

7/2 + O(x9/2) ,(22)

where l is the mean anomaly and n = 2π/P is the mean mo-
tion, where P is the orbital period defined as the time to go
from pericenter to pericenter. Due to precession effects, this
is different from the time taken to go from ϕ to ϕ+2π. The
dot represents the time derivative, e.g. ϕ̇ = dϕ/dt. We also
define the invariant PN coefficient x = (Mω)2/3, where the
angular frequency is defined as ω = (2π+∆ϕ)/P and ∆ϕ is
the precession angle of the pericenter per period. We should
note that the coefficients in the equations presented above
and below are in general functions of the instantaneous ec-
centricity e and the eccentric anomaly u. In the limit of the
eccentricity e → 0, we reclaim the circular orbit case where
ω = ϕ̇. The adiabatic evolution of x and e are given by

Mẋ = ẋ0PNx
5 + ẋ1PNx

6 + ẋ2PNx
7 + O(x15/2) (23)

Mė = ė0PNx
4 + ė1PNx

5 + ė2PNx
6 + O(x13/2) . (24)

where we point the reader to the appendix of Hinder et al
(2008) for the complete description of the above equations.
The waveforms are generated as follows : after we have
evolved the above equations for x and e, we numerically
integrate Equation 22 to obtain l(t). We then use this value
to solve the post-Newtonian Kepler’s Equation 21, which is
a transcendental equation in u(t). Once we have u(t), e(t)
and x(t), we can then calculate r(t), ṙ(t), ϕ(t), ϕ̇(t), where
we calculate the integral of ϕ̇(t) and the derivative ṙ(t) nu-
merically.

In this work, to fully describe the GW po-
larisations we use the following parameter set :
~λ = {ln(Mc), ln(µ), ln(DL), ln(a0), cos θ, φ, e0, cos ι, ψ},
where Mc = Mη3/5 is the chirp-mass, µ = Mη is the
reduced mass, DL is the luminosity distance, a0 is the
initial semi-major axis of the orbit, (θ, φ) are the co-latitude
and longitudinal position of the source in the sky, e0 is the
initial eccentricity, ι is the inclination of the orbital plane
and ψ is the GW polarisation angle.

7.4 Detector response and parameter error

estimation

LISA can be thought of as pair of co-located detectors ro-
tated with respect to each other by an angle of 45 degrees.
In the Low Frequency Approximation (LFA) (Cutler 1998),
we can write the individual detector responses as

hi(t) = h+(ξ(t))F+
i (t) + h×(ξ(t))F×

i (t), (25)
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where ξ(t) is the phase shifted time parameter defined by

ξ(t) = t−R⊕ sin θ cos (α(t) − φ) . (26)

Here R⊕ corresponds to one AU and α(t) = 2πfmt + κ,
where the LISA modulation frequency is fm = 1/year and
κ is the initial ecliptic longitude of the guiding center of the
LISA constellation. The functions F+,×(t; θ, φ, ψ) are the
beam pattern functions of the detector (Cornish & Rubbo
(2003)).

Given sources h(t) and g(t) we can define a noise
weighted inner product

〈h |g 〉 = 2

Z

∞

0

df

Sn(f)
h̃(f)g̃∗(f) + h̃∗(f)g̃(f). (27)

where h̃(f) is the Fourier transform of the signal, an asterisk
denotes a complex conjugate term and Sn(f) is the one-sided
noise spectral density of the detector. For this study, we use
a noise curve given by

Sn(f) = Sinstr
n (f) + Sconf

n (f) (28)

where the instrumental noise Sn(f) is given by

Sinstr
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(Cornish & Rubbo 2003). Here L = 5 × 106 km is the arm-
length for LISA, Spos

n (f) = 4× 10−22 m2/Hz and Sacc
n (f) =

9×10−30 m2/s4/Hz are the position and acceleration noises
respectively. The quantity f∗ = 1/(2πL) is the mean trans-
fer frequency for the LISA arm. Note that we have also in-
cluded a reddened noise term which steepens the noise curve
between 10−4 and 10−5 Hz. To model the galactic or con-
fusion noise we use the following confusion noise estimate
derived from a Nelemans, Yungelson, Zwart (NYZ) galac-
tic foreground model (Nelemans et al 2004; Timpano et al
2006)

Sconf
n (f) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

10−44.62f−2.3 10−4 < f 6 10−3

10−50.92f−4.4 10−3 < f 6 10−2.7

10−62.8f−8.8 10−2.7 < f 6 10−2.4

10−89.68f−20 10−2.4 < f 6 10−2

, (30)

where the confusion noise has units of Hz−1.
Using the noise weighted inner product, we can define

the optimal signal to noise ratio (SNR) by

〈h |h 〉opt = 4

Z

∞

0

df

Sn(f)
|h̃2(f)|. (31)

We can also define the Fisher information matrix (FIM) by

Γαβ = 〈∂αh |∂βh 〉 . (32)

where the theoretical standard deviation error estimate in
parameter recovery is given as

σα =

q

(Γαα)−1 (33)

The derivatives of the waveforms appearing in the
FIM are generated numerically. We refer the reader to
(Porter & Cornish 2008) for the intricacies in the numeri-
cally calculation of the FIM.

7.5 Sampling the parameter space

Figure 10 provides the semi-major axes, eccentricities and
orbital periods for the models C,F ,L and O, assuming an
equal mass IMBH binary with individual rest-frame masses
of Mi = 440M⊙. To sample the parameter space we ran
a 1000 iteration Monte Carlo simulation over the param-
eters {a0, e0, θ, φ, ι, ψ}, while keeping the luminosity dis-
tance and redshifted mass parameters constant. For the
angular parameters we assume (cos θ, cos ι) ∈ [−1, 1] and
(φ,ψ) ∈ [0, 2π] and we then draw uniformly from these
ranges.

As the IMBHs in the study are quite low mass as com-
pared to SMBHs, we need to ensure that the sources are
detectable. Given the masses of the systems in question, the
GW frequency at the last stable circular orbit is between
4-6 Hz, which is well outside the frequency range of LISA.
Therefore, we placed all sources at a common distance of
DL=100 Mpc and required a SNR greater than 5. At this
distance, the parameter values observed by LISA are the red-
shifted rather than rest frame values. To account for this, the
measured total mass is M(z) = (1 + z)M and the measured
GW frequency of the waveform is fgw(z) = fgw/(1 + z). In
this study we use the following relation between redshift, z,
and luminosity distance, DL :

DL =
c(1 + z)

H0

Z z

0

dz′
h

ΩR

`

1 + z′
´4

+ ΩM

`

1 + z′
´3

+ ΩΛ

i−1/2

, (34)

where we assume WMAP values of values of (ΩR,ΩM ,ΩΛ) =
(4.9 × 10−5, 0.27, 0.73) and a Hubble’s constant of H0=71
km/s/Mpc.

We also decided to enforce a maximum possible GW
frequency of 3 mHz to ensure the fidelity of the LFA
(Cornish & Rubbo 2003; Shapiro Key & Cornish 2009).
Thus, using the information in Figure 11, we evolved the
sources from first entering the LISA bandwidth to the point
where they achieved the required SNR threshold. For this
we assumed a 3 year mission lifetime for LISA.

Using the above constraints it was possible to find min-
imum and maximum values of (a0, e0) which satisfied both
the SNR and maximum frequency constraints. Furthermore
to sample this parameter sub-space we found it was possible
to relate the eccentricity and semi-major axis for the four
models according to a quadratic law, i.e.

e = −c0 + c1 a0 + c2 a
2
0, (35)

where we provide the coefficients ci, the maximum and mini-
mum values of both a0 and e0 in Table 7. Thus, by uniformly
sampling a0, we also have a corresponding sample in e0. We
can see from Table 7 that although the binaries have appre-
ciable eccentricities when they first enter the LISA band, i.e
e ∼ 0.1 − 0.15, by time the systems become observable the
eccentricity has dropped to e ∼ 0.012 − 0.019.

While the Monte Carlo is carried out using the sky co-
ordinates of the source, a more interesting quantity to quote
is LISA’s angular resolution for each source. We define the
angular resolution as

∆Ω = 2π

q

ΣθθΣφφ − (Σθφ)2, (36)

where
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Model c0 c1 c2 amin
0 × 10−8pc amax

0 × 10−8pc emin
0 emax

0

C 1.1366 × 10−3 9.6414 × 104 9.4069 × 1011 3.6123 10.669 3.5924 × 10−3 1.9942 × 10−2

F 6.9767 × 10−4 6.3737 × 104 6.9846 × 1011 3.6107 9.8673 2.5227 × 10−3 1.2389 × 10−2

L 1.1591 × 10−3 1.0606 × 105 1.1698 × 1012 3.7049 9.3739 4.3852 × 10−3 1.9056 × 10−2

O 8.6073 × 10−4 8.4893 × 104 1.0181 × 1012 3.8524 9.0204 3.9227 × 10−3 1.5081 × 10−2

Table 7. Quadratic power law coefficients for the four models C,F ,L,O, as well as minimum and maximum ranges for the initial
semi-major axes a0 and eccentricity e0.

Σαβ =
D

∆λα∆λβ
E

= (Γαβ)−1 . (37)

We can now define the quantities appearing in the angu-
lar resolution as Σθθ = 〈∆ cos θ∆ cos θ〉, Σφφ = 〈∆φ∆φ〉
and Σθφ = 〈∆ cos θ∆φ〉. The angular resolution has units of
steradians.

7.6 Results of the Monte Carlo

In Figure 11 we plot the recovered SNRs for the four models
of IMBH inspiral. The models C,F ,L and O are represented
top to bottom, and left to right. We can see that while it is
possible to have strong sources, with SNRs > 300, the vast
majority of samples returned more modest, but detectable
SNRs in the range of 5 to 50. This means that IMBH inspi-
rals should be observable with the LISA detector.

Due to the lower mass ranges of these binaries, for sys-
tems placed at 100 Mpcs, the sources start to become visible
in the detector at GW frequencies of 5×10−4 Hz and higher.
However, as they are still very widely separated at this point,
there is very little evolution in frequency or eccentricity over
a three year period. In Figure 12 we plot the initial and fi-
nal eccentricity distributions for the four models. We can see
that there is very little circularisation of the binaries during
the observation period, which means that systems entering
the observable LISA band with eccentricities of ∼ 0.02 will
reach the end of the three years with almost the same ec-
centricity. As a consequence, these sources should retain a
measurable eccentricity throughout the LISA mission life-
time. We discuss about the consequences of these results on
lower-frequency Astrophysics and Data Analysis in the next
section.

8 CONCLUSIONS

In this study we have carried out a dynamical study and a
first step analysis of the detection of IMBH binary systems
in rotating clusters. For the case of a rotating King model
without rotation, the results of the presented survey verify
previous outcomes by Makino et al (1993), Hemsendorf et al
(2002) for massive black hole binary evolution in Plummer
models facing the development of the binding energy, the
eccentricity and determined hardening constants. Analysing
an extensive number of simulations, the main results from
our study of the Dynamics of these systems can be described:
(1) The final eccentricity is strongly dependent on the initial
black hole velocities. (2) The eccentricity is dependent on
the rotation parameter of the model. (3) Determined hard-
ening rates in the same range of previous direct N−body

simulations of comparable particle numbers. (4) Only weak
changes in the inclination and in the orientation of the an-
gular momentum vector direction have been observed, con-
sistent with simulations by Milosavljević & Merritt (2001).
(5) Counter rotation simulations yield noticeable different
results in eccentricity, in one case actually an extreme large
value ē = 0.997. (6) Brownian motion of the centre of mass of
the binary is influenced by the rotation of the stellar system.
All simulations indicate that the orbital parameters eccen-
tricity and inclination develop to passably constant values
in the non- or only weak bound state, determined by initial
conditions and the influence of dynamical friction.

In order to understand the impact of these sources in
lower-frequency GW Astrophysics, we have extended the di-
rect N−body simulations with a simplified semi-analytical
model. Whilst this approach is a “kludge” and can only be
envisaged as an approximation, the integration of the sys-
tem down to LISA’s window is out of question because this
would require months of CPU calculation and, on the top
of that, the numerical error would accumulate, so that the
results would not be as robust as what one can expect from
direct-summation schemes.

We choose the systems yielding a larger eccentricity in
the dynamical simulations because these are the most ap-
pealing cases in the sense that their detection will be very
challenging. Also, information about the previous dynamical
story of the system is encoded in the radiation in the form
of a nonnegligible eccentricity.

The results presented above show that LISA should
have no problems in identifying the existence of IMBH bi-
naries. Such events are important for LISA data analysis
as they are a previously unconsidered source in terms of
dectability and parameter extraction. Our simulations also
suggest that they will spend their lifetime in the detector
with a measurable eccentricity. In this work, we have looked
at a particular case study where the masses and the luminos-
ity distance of the sources were fixed, and a Monte Carlo ran-
domisation carried out over the other response parameters.
We demonstrated that we will be able to accurately measure
the masses and sky resolution of such sources. While the ec-
centricity is weak when the source becomes observable in
the detector, it should still be possible to carry out a precise
measurement of the initial eccentricity of the source.

For this we used the LFA response for the LISA detec-
tor. This limited the sources we investigated to a maximum
GW frequency of 3 mHz to ensure that the LFA was still
valid. As these are also quite high frequency sources, they
have a long generation time, which puts a time constraint
of the size of the Monte Carlo that can be carried out. Fi-
nally, the waveforms used in this work represent eccentric
non-spinning binaries.
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Figure 11. The optimal SNRs for the inspiral of IMBH binary of Models C,F ,L and O from the top to the bottom and from the left to
the right. While it is possible to have very strong sources with SNRs in the range of 300-400, the vast majority of samples return SNRs
of between 5 and 50 for all four models

∆~λ C F L O

∆Mc/Mc 2.6982 × 10−4 1.9155 × 10−4 8.4848 × 10−5 1.3321 × 10−4

∆µ/µ 3.2393 × 10−3 2.6694 × 10−3 9.9361 × 10−4 1.5502 × 10−3

∆DL/DL 5.1611 × 10−1 4.1823 × 10−1 2.8644 × 10−1 3.3223 × 10−1

∆Ω 2.1022 × 10−3 1.7114 × 10−3 9.4282 × 10−4 1.1711 × 10−3

∆cos ι 1.8954 × 10−1 1.5333 × 10−1 9.0724 × 10−2 1.1194 × 10−1

∆e0 7.9722 × 10−7 7.0795 × 10−7 5.9972 × 10−7 6.0454 × 10−7

SNR 10.81 12.68 17.86 15.31

Table 8. Median values of the parameter estimation errors and SNRs for the four models C,F ,L,O. Note that the units of ∆Ω is
steradians

As well as detectability, the extraction of the system
parameters is also of great importance in GW Astrophysics.
Using the FIM, we obtained the error predictions for the
important system parameters. As the error predictions are
a function of the position of the source in the sky, plus the
orientation of the system with respect to the LISA constel-
lation, the Monte Carlo simulations produced error distribu-
tions with large tails. Because of this fact, we have decided

to quote the median errors for the relevant parameters. In
Table 8 we present the median errors for the parameters
(Mc, µ,DL,∆Ω, cos ι, e0). We can see that for all models the
fractional errors in the estimation of the chirp-mass and re-
duced mass are of the order of 10−4 and 10−3. While there
is not much frequency evolution for these sources, the fact
that they appear in the detector at frequencies on the order
of mHz means that we can obtain errors in the luminosity
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Figure 12. The initial and final eccentricities for the inspiral of IMBH binary of Models C,F ,L and O from the top to the bottom and
from the left to the right, assuming a 3 year observation period for LISA. As the binary components are still quite widely separated,
there is little circularisation during the observation period, and the binaries thus retain a measurable eccentricity. Note the different
eccentricity scales in the different cells

distance of the order of 10−1. We see a similar order of er-
ror in the estimation of cos ι which is in general a difficult
quantity to measure using electromagnetic information.

It is also quite remarkable to see that angular resolu-
tion of the IMBH inspirals is very good, with median errors
on the order of 10−3 steradians, corresponding to an error
box on the sky of about 3 square degrees. This level of accu-
racy would place an inspiralling IMBH firmly in the field of
view of a future detector such as the Large Synoptic Survey
Telescope (LSST). Finally, we can also see, again from the
fact that these sources are emitting GWs at frequencies on
the order of mHz, the fractional errors in the estimation of
initial eccentricity is on the order of 10−7.

While we have shown that these IMBH binaries are de-
tectable, there are a number of ways in which the analy-
sis can be improved in the future. Firstly, a more repre-
sentative study would also have randomised the individual
masses of the binaries, as well as their luminosity distance.
This would allow us to give a more concrete statement on
detection and parameter estimation with the LISA detec-

tor. Secondly, we restricted the maximum GW frequency
of the binary to 3 mHz to ensure a valid approximation
to the LISA response. In the future, we could investigate
higher frequency binaries by either using a Rigid Adiabatic
Approximation (Rubbo et al 2004) or full response to the
LISA detector. However, we should point out that for the
higher frequency binaries, the initial eccentricity drops off
rapidly, and these binaries may now be essentially circular.
A more realistic study would also include the use of more
realistic waveforms which include spins and higher harmon-
ics. However, work on such templates has yet to fully start
in earnest. Finally, it would also be interesting to carry out
a longer Monte Carlo, and assume different mission lifetimes
to see how detectability changes over observation time.
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was partially supported German Science Foundation under
SFB439 “Galaxies in the Young Universe” and the Volkswa-
gen Foundation.

REFERENCES

Aarseth, S., 2003, Gravitational N-body simulations (Cam-
bridge University Press, Cambridge), p.173

Ahmad A., Cohen L., Journal of Computational Physics
1973, 12, 349

Amaro-Seoane, P. and Freitag, M., 2006, ApJ Letts. L53-
L56

Amaro-Seoane P., Miller M. C., Freitag M., 2009, ApJ
Lett., 692, L50

Begelman M.C., Blandford R.D., Rees M.J., 1980, Nature,
287, 307

Berczik P., Merritt D., Spurzem R., 2005, ApJ, 633, 680
Berczik, P., Merritt, D., Spurzem, R., Bischof, H.-P., 2006,
ApJ, 642, L21

Berentzen I., Preto M., Berczik P., Merritt D., Spurzem R.,
2009, ApJ, 695, 455

Casertano S., Hut P., 1985, ApJ, 298, 80
Cornish N.J., Rubbo L.J. 2003, Phys.Rev.D, 67, 022001
Cutler C., 1998, Phys.Rev.D, 57, 7089
Damour T., Gopakumar A., Iyer B.I., 2004, Phys.Rev.D,
70, 064028

Dieball A., Müller H., Grebel E. K., 2002, A&A, 391, 547
Einsel C., Spurzem R., 1999, MNRAS, 302, 81
Fiestas, J., Spurzem, R. and Kim, E., 2006, MNRAS, 373,
677

Fregeau J. M., Larson S. L., Miller M. C., O’Shaughnessy
R., Rasio F. A., 2006, ApJ Lett., 646, L135

Freitag M., Gürkan M. A., Rasio F. A., 2006, MNRAS, 368,
141

Freitag, M., Rasio, F. A., & Baumgardt, H. 2006c, MN-
RAS, 368, 121

Gallagher S. C., Charlton J. C., Hunsberger S. D., Zaritsky
D., Whitmore B. C., 2001, AJ, 122, 163

Gebhardt K., Pryor C., O’Connell R. D., Williams T. B.,
Hesser J. E., 2000, AJ, 119, 1268

Gürkan M. A., Freitag M., Rasio F. A., 2004, ApJ, 604,
632

Gürkan M. A., Fregeau J. M., Rasio F. A., 2006, ApJ Lett.,
640, L39

Haehnelt, M. G., Rees, M. J., 1993, MNRAS, 263, 168
Hemsendorf M., 2000, Dynamics of black holes in galactic

centres (Shaker, Aachen)
Hemsendorf M., Sigurdson S., Spurzem R., 2002, ApJ, 581,
1256

Hinder I., Herrmann F., Laguna P., Shoemaker D.,
arXiv:0806.1037

Komossa S., Burwitz V., Hasinger G., Predehl P., Kaastra
J.S., Ikebe, Y., 2003, ApJ, 582, L15

Kustaanheimo P., Stiefel E., Journal für die reine und ange-
wandte Mathematik 1965, 218, 204

Lagoute C., Longaretti P.-Y., 1996, A&A, 308, 441
Longaretti P.-Y., Lagoute C., 1996, A&A, 308, 453
Makino J., Fukushige T., Okumura S.K., Ebisuzaki T.,
1993, PASJ 45, 303

Merritt D., 2001, ApJ, 565, 245
Merritt D., Ekers R.D., 2002, Science, 297, 1310
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