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We assess the statistical errors in estimating the parameters of non-spinning black-hole binaries
using ground-based gravitational-wave detectors. While past assessments were based on partial
information provided by only the inspiral and / or ring-down pieces of the coalescence signal, the
recent progress in analytical and numerical relativity enables us to make more accurate projections
using “complete” inspiral-merger-ringdown waveforms. We employ the Fisher information-matrix
formalism to estimate how accurately the source parameters will be measurable using a single
interferometric detector as well as a network of interferometers. Those estimates are further vetted
by full-fledged Monte-Carlo simulations. We find that the parameter accuracies of the complete
waveform are, in general, significantly better than those of just the inspiral waveform in the case of
binaries with total mass M & 20M⊙. In particular, for the case of the Advanced LIGO detector,
parameter estimation is the most accurate in the M = 100 − 200M⊙ range. For an M = 100M⊙

system, the errors in measuring the total mass and the symmetric mass-ratio are reduced by an
order of magnitude or more compared to inspiral waveforms. Furthermore, for binaries located at
a fixed luminosity distance dL, and observed with the Advanced LIGO–Advanced Virgo network,
the sky-position error is expected to vary widely across the sky: For M = 100M⊙ systems at
dL = 1Gpc, this variation ranges mostly from about a hundredth of a square-degree to about a
square-degree, with an average value of nearly a tenth of a square-degree. This is more than forty
times better than the average sky-position accuracy of inspiral waveforms at this mass-range. For
the mass parameters as well as the sky-position, this improvement in accuracy is due partly to
the increased signal-to-noise ratio and partly to the information about these parameters harnessed
through the post-inspiral phases of the waveform. The error in estimating dL is dominated by the
error in measuring the wave’s polarization and is roughly 43% for low-mass (M ∼ 20M⊙) binaries
and about 23% for high-mass (M ∼ 100M⊙) binaries located at dL = 1Gpc.

PACS numbers: 04.30.Tv,04.30.-w,04.80.Nn,97.60.Lf

I. INTRODUCTION

Astrophysical black holes (BHs) are typically classi-
fied into three groups: stellar-mass BHs (with a mass of
approximately 3 — 30M⊙), [super]massive BHs (∼ 104

— 1010M⊙) and intermediate-mass (IM) BHs (∼ 30 —
104M⊙). There is strong observational evidence for the
existence of both stellar-mass and supermassive BHs.
The existence of stellar-mass BHs, which are the end
products of stellar evolution, has been primarily inferred
from observations of X-ray binaries that allow us to esti-
mate the mass of the compact object through measure-
ments of the orbital period and the maximum line-of-
sight Doppler velocity of the companion star [1]. The
mechanism for producing supermassive BHs is less cer-
tain but the acceleration of gas disks in the bulges of
nearly all local massive galaxies point to their existence
there [2]. Even more convincingly, the observations of
stellar proper motion in the center of the Milky Way have
confirmed the presence of a supermassive BH [3]. On the
other hand, the observational evidence for IMBHs is only
suggestive. The main hint comes from the observations
of ultraluminous X-ray sources, combined with the fact
that several globular clusters show evidence for an excess
of dark matter in their cores [4].

∗Electronic address: ajith@caltech.edu
†Electronic address: sukanta@wsu.edu

According to hierarchical galaxy-merger models, [su-
per]massive BH binaries should form frequently, and
should be common in the cores of galaxies. There is at
least one piece of clear evidence for the existence of a su-
permassive BH binary, namely, the X-ray active binary
black hole (BBH) at the center of the galaxy NGC 6240,
which is expected to coalesce in Hubble time [5]. There
is also growing observational evidence for the existence
of many other [super]massive BBHs [6, 7, 8, 9]. De-
spite the lack of any observational evidence for stellar-
mass/intermediate-mass BH binaries, different mecha-
nisms to form these binaries have been proposed in the
literature (see, for e.g., [10, 11, 12, 13]).

Coalescing BH binaries are among the most promis-
ing sources of gravitational waves (GWs) for the ground-
based interferometric detectors. What makes them ex-
tremely interesting is that their gravitational waveforms
can be accurately modelled and well parametrized by
combining a variety of analytical and numerical ap-
proaches to General Relativity. To wit, the gravitational
waveforms from the inspiral stage of the binary can be
accurately computed by the post-Newtonian (PN) ap-
proximation to General Relativity, while those from the
ring down stage can be computed using BH perturba-
tion theory. The recent breakthrough [14, 15, 16] in nu-
merical relativity has made it possible to compute accu-
rate gravitational waveforms from the hitherto unknown
merger stage as well [14, 15, 16, 17, 18, 19, 20, 21].

Concomitant with that breakthrough has been the no-
table progress in GW instrumentation. The Initial LIGO
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(LIGOI) [22] detectors have completed their first science
run at design sensitivity. The Virgo detector [23] ran
concurrently with LIGO for part of that run. Currently,
both observatories are undergoing commissioning work
with the target of achieving second-generation sensitivi-
ties over the next several years, to usher us into the era
of Advanced LIGO (AdvLIGO) [24] and Advanced Virgo
(AdvVirgo). Also, an intermediate, enhanced stage of
LIGO, called Enhanced LIGO (EnhLIGO), is expected
to be operational this year.

In the absence of any observational evidence of stellar-
mass/intermediate-mass BH binaries, the rate of binary
coalescence events is estimated by population synthesis
studies. Plausible rate estimates for stellar-mass BH co-
alescences detectable by LIGOI / EnhLIGO / AdvLIGO
detectors range from 7 × 10−4 / 7 × 10−3 / 2 per year
to 2 / 20 / 4000 per year with a likely rate estimate of
around 0.01 / 0.1 / 30 per year [25]. For the case of IMBH
binaries, the plausible rates for LIGOI / AdvLIGO de-
tectors are 10−4 / 0.1 per year [12]. Similarly, for the
case of stellar-mass BHs merging with IMBHs (the so-
called intermediate-mass-ratio inspirals), plausible event
rates for LIGOI / AdvLIGO are 10−3 / 10 per year [13] 1.
A network of interferometric detectors involving LIGO,
Virgo, and perhaps others, such as GEO600 [27], and
TAMA [28], will be able to extract a host of physical
parameters of those sources, complementing other de-
tectors probing their electromagnetic characteristics.

Indeed, some of the BBH mergers, e.g., triggered
by the mergers of galaxies/stellar clusters harboring
supermassive/intermediate-mass BHs, are likely to have
electromagnetic (EM) counterparts. To associate an EM
event with a GW signal from such a merger, and vice
versa, one needs to be able to locate the GW source
with a high enough accuracy so that the number of
star clusters or galaxies in the sky-position error box
is sufficiently small. As argued in Ref. [29], even arc-
minute resolution can make such associations quite fea-
sible. Whereas the GW observations are expected to
provide more accurate distance measurements than their
EM counterpart, the latter will locate the sources in
the sky with far greater resolution than the former.
This complementarity was explored in Ref. [30] to ar-
gue that by combining GW and electromagnetic obser-
vations it should be possible to constrain the values of
certain cosmological parameters. In particular, using
the distance-redshift relation from many BBH “standard
sirens”, such multi-messenger observations can put in-
teresting constraints on the equation of state of the dark
energy [31, 32]. Supermassive BH binaries are also ex-
cellent test beds for “strong-field” predictions of General
Relativity (see, e.g., [33, 34]). Also, GW observations of
BBH coalescences can be used to test theoretical pre-
dictions such as the “no-hair” theorem [35]. The effec-
tiveness of these and other applications depends on the

1 It should be noted that these assessments take into account only
the inspiral stage (for the case of stellar-mass and intermediate-
mass-ratio binaries) or ring-down stage (for the case of IMBH
binaries) of the binary coalescence. The event rates are likely
to be higher for a search using inspiral-merger- ring down tem-
plates. See, for example, Fig. 14 of [26] for a comparison of the
sensitivities of searches employing different templates.

accuracy with which we can estimate the parameters of
the binary, which includes the component masses, dis-
tance, orientation, and sky location.

In this work, we study the effect of detector noise
in limiting the accuracy with which parameters of a
BBH system can be determined with the present and
planned earth-based laser interferometers. In the past,
in the absence of complete coalescence waveforms arising
from numerical relativity, parameter estimation studies
were constrained to address this question only for the
inspiral/ring-down pieces of the signal present in the
band of a detector [36, 37, 38, 39, 40, 41, 42, 43, 44, 45].
Here we extend those studies to estimate how the astro-
physical quest for characterizing such systems benefits
from the knowledge of the complete coherent signal, com-
prising some or all of the inspiral, merger, and ringdown
pieces, that lies in a detector’s observational band. Im-
provements in the accuracy of BBH parameter measure-
ments might be expected owing to the increased signal-
to-noise ratio (SNR) arising from the inclusion of the
post-inspiral pieces. A second avenue toward parameter
accuracy improvements can also arise, for some parame-
ters, from the breaking of some parameter degeneracies
that the extra information carried by the GW phasing
of those pieces might offer. We employ the phenomeno-
logical inspiral-merger-ringdown waveforms proposed in
Refs. [26, 46, 47] to explore these possibilities. 2 The
systematic errors that might arise in observations using
these “complete” 3 BBH coalescence templates are stud-
ied in Ref. [54].

To estimate the parameter errors, we adopt a two-
pronged approach. One of these is of obtaining the
Fisher information matrix and then inverting it to de-
rive the parameter error variance-covariance matrix [55].
The elements of this matrix are then used to obtain the
lower bound on the parameter estimator errors [56, 57].
This approach is employed here, in spite of its known
limitations [37, 38, 58], since it has been studied exten-
sively in the community and allows for a fair comparison
of our results with those given in the literature. How-
ever, since by its very design, this bound may not be re-
spected for signals with a low SNR (as first demonstrated
by Refs. [37, 38]), we also assess estimator errors through
Monte Carlo studies. For the parameter ranges consid-
ered here, the latter approach corroborates the findings
of the former, with a few notable exceptions arising from
parameter space boundaries, where the Monte Carlo es-
timates reflect better the results expected from real-data
searches.

In addition to addressing the primary question on how
large the parameter errors are, we also study their be-
havior across the BBH parameter space. We study how
the various estimator errors scale with the mass param-
eters themselves. How much improvement do the com-
plete waveforms impart to the determination of the sky-
position of BBHs in multi-detector searches? How does

2 A similar study using the effective-one-body-numerical-relativity
waveforms [48, 49, 50, 51, 52] is being pursued as well [53].

3 Throughout this paper, we refer to the waveforms modelling
all the three (inspiral, merger and ringdown) stages of BBH
coalescence as “complete” waveforms.
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the sky-position accuracy change with the BBH mass pa-
rameters? A summary of our results is as follows: First,
we find that the parameter-estimation accuracies using
the complete waveforms are, in general, significantly bet-
ter than those using only their inspiral phases in the case
of BBHs with a total mass M ≡ (m1 + m2) & 20M⊙,
where m1,2 are the component masses, at least for mass-
ratios between 0.25 and unity. The observed trend sug-
gests that this improvement can be expected for some-
what lower mass-ratios as well. Second, for BBHs at
a fixed effective distance and M & 10M⊙ whereas the
fractional errors in the two mass parameters, M and
η ≡ m1m2/M

2, scale mostly monotonically with M for
the inspiral-only waveforms, they do not display that
property for the complete waveforms. In the latter case,
they instead exhibit a distinct minimum, whose location
is determined by M , η, and the detector’s noise power
spectral-density (PSD). Third, owing to the use of com-
plete vis à vis inspiral-only waveforms the sky-position
accuracy improves by factors of many. We also show that
for the complete waveforms alone, the sky-position ac-
curacy mostly degrades with increasing total-mass when
the SNR is kept fixed. This is primarily caused by a simi-
lar degradation in the estimation accuracy of the signal’s
times of arrival at the different detectors in a network.
This deterioration in accuracy, while not monotonic in
M at finer scales, is broadly so at large scales, and is
caused by the reduction in the number of in-band wave
cycles.

More specifically, for Advanced LIGO, the estima-
tion of the total mass, the symmetric mass-ratio, and
the effective distance deff is the most accurate in the
M = 100 − 200M⊙ range. (For other detectors, that
mass range is somewhat different since it is partly de-
termined by their noise PSDs.) For such systems, the
reduction of errors in parameter estimates is by an order-
of-magnitude or more due to the inclusion of the post-
inspiral phases. The improvement is mainly due to the
expected increase in SNR arising from the inclusion of
those phases. This expectation, which is based on the
assumed Gaussianity and stationarity of detector noise,
must be tempered by the observation that the amount
of increase in SNR can be less in real data.

We also observe that for a fixed SNR, the inclusion
of the post-inspiral phases improves the accuracy of M
and η for a wide range of masses much more (by several
times) than that of the chirp massMc. This is due to the
fact that the inclusion of those phases helps in breaking
the degeneracy between those two parameters (M and
η) known to exist in the inspiral waveform.

For a fixed SNR, the estimation of the luminosity dis-
tance for low-mass systems shows negligible change by
the inclusion of the post-inspiral phases. This is due to
its strong covariance with the polarization and the or-
bital inclination angles of the binary, which is mostly
unaltered by the inclusion of the post-inspiral phases.
Also, for a fixed SNR, the luminosity distance estimate
deteriorates with increasing M , for reasons discussed be-
low. On the other hand, for a fixed luminosity distance,
the error in its estimate initially improves with increas-
ing M , due to the increase in SNR, before degrading
eventually owing to the decreasing number of in-band
wave cycles.

Before moving on, we wish to point out some limi-

tations of the present work. First, this study considers
only the dominant harmonic of non-spinning BBH wave-
forms. Astrophysical BHs are expected to have spin, and
including spin effects can change the estimation of dif-
ferent BBH parameters [59]. Whereas on the one hand
previous calculations have shown that the parameter-
estimation accuracies generally deteriorate upon the in-
clusion of spin-orbit and spin-spin couplings [36, 59],
on the other hand the inclusion of spin-induced preces-
sion in the waveform model can improve the parame-
ter estimation [60, 61]. Also, it has been noted in var-
ious studies that including the higher harmonics can
significantly increase the parameter-estimation accura-
cies [32, 62, 63, 64, 65, 66]. So, while the results pre-
sented in this paper may not be too far from the real-
istic case, we stress that a rigorous statement on the
parameter-estimation accuracies should consider these
effects as well. Moreover, neglecting spins and higher
harmonics in the waveform models can result in signif-
icant amount of systematic errors in estimating various
parameters. These systematic errors are out of the scope
of this paper. A preliminary investigation of this is pre-
sented in Ref. [54].

This paper is organized as follows: Sec. II briefly in-
troduces the main aspects of the search for binary black
holes. In particular, Sec. II A reviews the phenomenolog-
ical inspiral-merger-ring down waveform templates pro-
posed in Refs. [26, 46, 47], while Sec. II B provides a
brief introduction towards the statistical theory of pa-
rameter estimation. In Sec. III, we present the results
of our calculations in the case of a search using a sin-
gle interferometric detector. This section discusses the
results from the analytical calculations using the Fisher-
matrix formalism as well as the numerical Monte-Carlo
simulations. Results from the calculations in the case
of a network of detectors are discussed in Sec. IV, while
Sec. V summarizes the main results and provides a dis-
cussion of the possible astrophysical implications of this
work.

II. GRAVITATIONAL WAVE OBSERVATIONS

OF NON-SPINNING BINARY BLACK HOLES

In General Relativity, the gravitational-wave strain at
any point in space can be expanded in terms of its two
linear polarization components h+(t) and h×(t) or the
two related circular polarization components,

h(t) ≡ h+(t) − ih×(t) = A(t) eiϕ(t) (2.1)

and its complex conjugate, with ϕ(t) and A(t) denoting
the wave’s phase and amplitude. Generally, the GW
emitted by a coalescing binary has multiple harmonics.
In this work, we limit our study to only the dominant
harmonic’s contributions to ϕ(t) and A(t). Then the GW
strain h(t) in a detector is the linear combination of the
two polarization components, h(t) = F+h+(t)+F×h×(t),
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FIG. 1: Noise amplitude spectrum (
p

Sh(f)) of different de-
tectors considered in this paper.

with the detector’s antenna-pattern functions given as:

F+(θ, φ, ψ) = −
1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ,

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ

− cos θ sin 2φ cos 2ψ. (2.2)

Above, θ and φ are the polar and azimuthal angles speci-
fying the location of the source in the sky in the detector
frame and ψ is the polarization angle.

The two polarization components of the BBH signals
are sinusoids with varying amplitude and frequency, and
have phases π/2 radians apart relative to each other.
Consequently, their GW signal in a detector can be writ-
ten as:

h(t) = C A(t) cos[ϕ(t) + ϕ0], (2.3)

where the amplitude coefficient C and phase ϕ0 can be
assumed to be constant for signals lasting for a dura-
tion (up to several minutes) much shorter than Earth’s
rotational time-scale:

C =
1

2

√

(1 + cos2 ι)2F 2
+ + 4 cos2 ιF 2

×,

ϕ0 = tan−1

[

2F× cos ι

F+(1 + cos2 ι)

]

. (2.4)

Above, ι is angle of inclination of the orbit to the line of
sight.

A. Detecting non-spinning binary black holes

The GW signal’s phase ϕ(t) and amplitude A(t) are
functions of the physical parameters of the binary, such
as the component masses and the spins. Detecting a
signal requires analyzing interferometric data, which are

noisy. Defining a search strategy, therefore, necessitates
the modelling of this noise, which we take here to be
zero-mean Gaussian and stationary:

n(t) = 0, (2.5)

ñ∗(f)ñ(f ′) =
1

2
Sh(f) δ(f − f ′) , (2.6)

with the over-bar denoting the ensemble average and the
tilde denoting the Fourier transform,

ñ(f) =

∫ ∞

−∞

n(t) e−2πift dt . (2.7)

Above, Sh(f) is the Fourier transform of the auto-
covariance of the detector noise and is termed as its (one-
sided) power spectral-density. We also assume the noise
to be additive. This implies that when a signal is present
in the data x(t), then

x(t) = h(t) + n(t) . (2.8)

The noise covariance Eq. (2.6) introduces the following
inner-product in the function space of signals:

〈a, b〉 = 4ℜ

∫ ∞

0

df
ã∗(f) b̃(f)

Sh(f)
, (2.9)

where ã(f) and b̃(f) are the Fourier transforms of a(t)
and b(t), respectively.

Under the above assumptions about the characteris-
tics of detector noise, the Neyman-Pearson criterion [55]
leads to an optimal search statistic, which when max-
imized over the amplitude coefficient C, is the cross-
correlation of the data with a normalized template,

ρ ≡ 〈ĥ, x〉 , (2.10)

where the normalized template is ˆ̃h(f) ≡ h̃(f)/
√

〈h, h〉.
In a “blind” search in detector data, where none of the
binary’s parameters are known a priori, the search for
a GW signal requires maximizing ρ over a “bank” of
templates (see, for e.g., [67]) corresponding to different
values of those physical parameters. Apart from the
physical parameters, the waveform also depends on the
(unknown) initial phase ϕ0 and the time of arrival t0.
Maximization over the initial phase ϕ0 is effected by us-
ing two orthogonal templates for each combination of the
physical parameters [68], and the maximization over t0
is attained efficiently with the help of the Fast Fourier
Transform (FFT) algorithms [69].

Since the cross correlation between the data and the
template can be most efficiently computed in the Fourier
domain by using the FFT, waveform templates in the
Fourier domain are computationally cheaper. Refer-
ence [26] proposed a family of analytical Fourier domain
templates for BBH waveforms of the form:

h̃(f) ≡ Aeff(f) eiΨeff (f), (2.11)

where the effective amplitude and phase are expressed
as:
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Aeff(f) ≡
M5/6

deff π2/3

√

5 η

24
f−7/6
merg







(f/fmerg)
−7/6

if f < fmerg

(f/fmerg)
−2/3

if fmerg ≤ f < fring

wL(f, fring, σ) if fring ≤ f < fcut,

Ψeff(f) ≡ 2πft0 + ϕ0 +
1

η

7
∑

k=0

(xk η
2 + yk η + zk) (πMf)(k−5)/3 . (2.12)

In the above expressions,

L(f, fring, σ) ≡

(

1

2π

)

σ

(f − fring)2 + σ2/4
(2.13)

is a Lorentzian function that has a width σ, and that
is centered around the frequency fring. The normal-

ization constant, w ≡ πσ
2

(

fring

fmerg

)−2/3

, is chosen so as

to make Aeff(f) continuous across the “transition” fre-
quency fring. The parameter fmerg is the frequency at

which the power-law changes from f−7/6 to f−2/3. The
effective distance to the binary is denoted by deff , which
is related to the luminosity distance dL by deff = dL/C.
The phenomenological parameters fmerg, fring, σ and fcut

are given in terms of the total mass M and symmetric
mass-ratio η of the binary as

πMfmerg = a0 η
2 + b0 η + c0 ,

πMfring = a1 η
2 + b1 η + c1 ,

πMσ = a2 η
2 + b2 η + c2 ,

πMfcut = a3 η
2 + b3 η + c3. (2.14)

The coefficients aj, bj , cj , j = 0...3 and xk, yk, zk, k =
0, 2, 3, 4, 6, 7 are tabulated in Table I of Ref. [47].

B. Measuring binary black hole parameters

To evaluate how effective the detectors will be in estab-
lishing the field of GW astronomy, especially, with the
second-generation Earth-based interferometers sched-
uled to come online around 2014, one needs to foremost
assess how accurately they can measure the astrophysical
properties of compact object binaries. That quest will be
limited, on the one hand, by the accuracy with which the
search templates can model actual gravitational wave-
forms, and, on the other hand, by the inherent statisti-
cal noise in the measurement process. The former issue
is one of systematics, which will be discussed elsewhere
(see, e.g., Ref. [54]). Here, we discuss the latter issue in
more detail.

To determine how large the noise-limited errors can
be in the measured values of the signal parameter, we
take those values to be the maximum likelihood estima-
tors (MLEs). The discussion in the preceding section
shows that a total of nine parameters characterize the
non-spinning BBH coalescence signals considered here.
They are the total mass M , the symmetric mass-ratio
η, the sky-position angles (θ, φ), the binary’s orienta-
tion angles (ψ, ι), the luminosity distance dL, the initial
(or some reference) phase ϕ0, and the time of arrival
(or some reference time) t0. For computing the error

estimates, we map them onto the components of the
parameter vector, ϑ ≡ {lnA, t0, ϕ0, lnM, ln η, θ, φ, ψ, ι},

where A = M5/6

deffπ3/2

√

5η
24 . Owing to noise, their MLEs,

ϑ̂, will expectedly fluctuate about the true values, i.e.,

ϑ̂ = ϑ + δϑ, where δϑa is the random error in estimat-
ing the parameter ϑa. The magnitude of these fluctua-
tions can be quantified by the elements of the variance-

covariance matrix, γab = δϑa δϑb [55].
A relation between the γab and the signal is available

through the Cramer-Rao inequality, which dictates that

‖ γ ‖ ≥ ‖ Γ ‖−1 , (2.15)

where Γ is the Fisher information matrix:

Γab =

N
∑

I=1

〈

∂ah̃
I(ϑ), ∂bh̃

I(ϑ)
〉

(I)

≡

N
∑

I=1

4ℜ

∫

df
∂ah̃

I∗(f ; ϑ) ∂bh
I(f ; ϑ)

SIh(f)
,(2.16)

where I is the detector index and ∂a denotes taking par-
tial derivative with respect to the parameter ϑa. There-

fore, ∆ϑa ≡
(

δϑa δϑa
)1/2

= Γ
−1/2
aa gives the lower

bound on the root-mean-square (rms) error in estimat-
ing ϑa. The two are equal in the limit of large SNR (see,
e.g., [58]).

The errors in the sky-position angles will be presented
in terms of the error in the measurement of the sky-
position solid angle, defined as:

∆Ω = 2π

√

(∆ cos θ∆φ)2 −
(

δ cos θ δφ
)2
. (2.17)

Each parameter-error, ∆ϑa, falls off inversely with SNR.
Since the solid angle is two dimensional, its error falls off
quadratically with SNR [55, 70, 71].

III. PARAMETER ESTIMATION:

SINGLE-DETECTOR SEARCH

A. Analytical calculation using Fisher information

matrix

In this section, we use the Fisher information-matrix
formalism to estimate the errors in measuring the param-
eters of coalescing BBHs with a single GW interferome-
ter. We present results for three generations of ground-
based detectors, namely, Initial LIGO, Enhanced LIGO
and Advanced LIGO. The one-sided noise PSD of the
Initial LIGO detector is given in terms of a dimension-
less frequency x = f/f0 by [72, 73]
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against the total mass of the binary. The errors of M, η, Mc and deff are in percentage and the errors of t0 are in seconds.
The value of the symmetric mass-ratio η is shown in legends. The solid lines correspond to a search using complete BBH
templates and the dashed lines correspond to a search using 3.5PN-accurate post-Newtonian templates in the SPA, truncated
at the Schwarzschild ISCO. The binary is placed optimally oriented at an effective distance of 1 Gpc.

Sh (f(x)) = 9 × 10−46
[

(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2
]

, (3.1)

where f0 = 150 Hz; while the same for Enhanced LIGO reads [74]:

Sh (f(x)) = 1.5 × 10−46
[

1.33 × 10−27 e−5.5 (ln x)2 x−52.6 + 0.16 x−4.2 + 0.52 + 0.3 x2.1
]

, (3.2)

where f0 = 178 Hz. For Advanced LIGO [72],

Sh (f(x)) = 10−49

[

x−4.14 − 5x−2 + 111
(1 − x2 + x4/2

1 + x2/2

)

]

, (3.3)

where f0 = 215 Hz, and, for Advanced Virgo [75],

Sh (f(x)) = 10−47
[

2.67 × 10−7x−5.6 + 0.59 e(ln x)
2 [−3.2−1.08 ln(x)−0.13(ln x)2] x−4.1 + 0.68 e−0.73(ln x)2 x5.34

]

, (3.4)

where f0 = 720 Hz. The calculations presented in
this section were performed using the Initial LIGO, En-
hanced LIGO and Advanced LIGO noise PSDs, while
the calculations presented in Sec. IV consider a three-
detector network consisting of Advanced LIGO and Ad-
vanced Virgo.

The parameters that can be estimated through single-
detector observations are {A(dL), t0, ϕ0,M, η}. To
be precise, one can measure only the Doppler-shifted
masses, unless there are additional experiments for de-
termining the Doppler-shift [36] and, therefore, allow the

estimation of the true masses. Doppler shifting can arise
due to the motion of the detector relative to the source
or the cosmological expansion. In measurements with
multiple-detectors, as discussed below, it is possible to
measure the source distance and sky-position as well.
There too, the distance observed is actually the Doppler-
shifted distance.

The Fisher matrix elements in the {A, t0, ϕ0,M, η}
space are computed from the derivatives of the wave-
forms described by Eqs.(2.11) – (2.14):



7

10
1

10
2

10
0

10
1

10
2

10
3

∆ 
M

/M
 x

 1
00

 

 

10
1

10
2

10
1

10
2

10
3

∆ 
η/

η 
x 

10
0

10
1

10
2

10
0

10
1

10
2

10
3

∆ 
M

c/
M

c 
x 

10
0

10
1

10
2

10
−4

10
−2

10
0

∆ 
t 0 [s

]

10
1

10
2

10
1

10
2

10
3

M/M
sun

∆ 
d

ef
f/d

ef
f x

 1
00

 

 

η = 0.25
η = 0.2222
η = 0.16

FIG. 3: Same as in Fig. 2 except that the binary is placed at an effective distance of 100 Mpc and the noise PSD corresponds
to that of Initial LIGO.
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FIG. 4: Same as in Fig. 2 except that the binary is placed at an effective distance of 100 Mpc and the noise PSD corresponds
to that of Enhanced LIGO.

Γab =
〈

∂ah̃(f), ∂bh̃(f)
〉

≃ 4

∫ fcut

flow

df
∂aAeff(f) ∂bAeff(f) +A2

eff(f) ∂aΨeff(f) ∂bΨeff(f)

Sh(f)
, (3.5)

where the low-frequency cutoff, flow, is chosen to be 10
Hz for Advanced LIGO, and 40 Hz for Enhanced and
Initial LIGOs. The upper-frequency cuttoff, fcut is given

by Eq. (2.14).

The rms errors in parameters M,η and t0 are com-
puted by inverting the Fisher matrix elements as dis-
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cussed in Sec. II B. The error in estimating the chirp
mass Mc and the effective distance deff are obtained by
propagating the errors in M,η and A in the following
way:

(

∆Mc

Mc

)2

=

(

∆M

M

)2

+
9

25

(

∆η

η

)2

+
6

5
CMη

∆M

M

∆η

η
(3.6)

(

∆deff

deff

)2

=
25

36

(

∆M

M

)2

+
1

4

(

∆η

η

)2

+

(

∆A

A

)2

+
5

6
CMη

∆M

M

∆η

η
−

5

3
CMA

∆M

M

∆A

A

− CηA
∆η

η

∆A

A
(3.7)

where ∆ϑa denotes the rms error in estimating ϑa ob-
tained from Γab, and Cab is the correlation coefficient
between parameters ϑa and ϑb.

Errors in the estimates of the parameters M,η,Mc, t0
and deff in the case of AdvLIGO detector are plotted
against the total massM in Fig. 2. These errors are com-
puted assuming that the binary is placed at an effective
distance of 1 Gpc. Also plotted in the figures are the
same error-bounds computed from the 3.5PN accurate

restricted PN waveforms in the stationary phase approxi-
mation (SPA), truncated at the Schwarzschild innermost
stable circular orbit (ISCO). It can be seen that, over
a significant range of the total mass, the error-bounds
in the complete templates are largely better than those
in the PN inspiral waveforms. For binaries with M =
100M⊙ and η = 0.25, the error-bounds in various param-
eters using the complete [PN] templates are ∆M/M ≃
0.34 [5.38] %, ∆η/η ≃ 0.84 [12.98] %, ∆Mc/Mc ≃
0.35 [2.47] %, ∆t0 ≃ 0.46 [15.51] ms and ∆deff/deff ≃
1.36 [5.24] %. The errors in estimating the same param-
eters using Initial LIGO and Enhanced LIGO detectors
are plotted in Figs. 3 and 4.

The rate of variation in the errors in different regions
of the parameter space can be understood by studying
the overlap function, which is the ambiguity function
maximized over t0 and ϕ0 [76]. Figure 5 plots the con-
tours of the overlap between waveforms generated at dif-
ferent points in the (M,η) space. Notice the change in
the shape and orientation of the ambiguity ellipses, es-
pecially, as the total mass of the binary is varied. While,
to a very good approximation, the chirp mass contin-
ues to remain as one of the eigen-coordinate [77] in the
case of the low-mass (with M ≤ 20M⊙) binary inspi-
ral (PN) waveforms, this is no longer true for the com-
plete waveforms of higher mass systems. This is be-
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FIG. 6: Errors in estimating the total mass M (top left), symmetric mass ratio η (top middle), chirp mass Mc (top right),
time of arrival t0 (bottom left) and effective distance deff (bottom right) in the case of Advanced LIGO noise spectrum, plotted
against the total mass of the binary. The errors of M, η, Mc and deff are in percentage and the errors of t0 is in seconds.
Symmetric mass-ratio η is shown in legends. The solid lines correspond to a search using complete BBH templates and the
dashed lines correspond to 3.5PN-accurate post-Newtonian templates in the SPA, truncated at the Schwarzschild ISCO. The
errors correspond to a fixed SNR of 10.
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FIG. 7: Same as Fig. 6 except that the noise PSD corresponds to that of Initial LIGO.

cause the latter waveforms have more information about
the component masses than just the chirp mass. The
eigen-directions change dramatically with increasing to-
tal mass. It can be seen that the error trends reported
in Fig. 2 closely follow the shape of these ambiguity el-

lipses. This also means that while placing templates in
the inspiral-merger-ring down searches, we will have to
consider these changes in the orientation of the ambigu-
ity ellipses. This will be studied in a future work.
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FIG. 8: Same as Fig. 6 except that the noise PSD corresponds to that of Enhanced LIGO.

One common problem encountered in the estimation
of errors using Fisher information matrix is the follow-
ing: In some cases (especially in the case of large number
of parameters), the Fisher matrix becomes badly condi-
tioned, thereby, decreasing the fidelity of the error co-
variance matrix derived by inverting it. This problem
can often be obviated by intelligently choosing the pa-
rameters and by projecting out certain dimensions in the
Fisher matrix (e.g., t0 and ϕ0). We have verified our re-
sults by comparing the errors computed using the full
Fisher matrix with those computed using the projected
matrix. In our calculations, they turned out to be the
same to the extent discernible in the figures and tables
presented here.

It may be noted that for a fiducial signal limited only
to the inspiral phase of the binary, i.e., for f < fmerg,
the parameter A is uncorrelated with the other signal pa-
rameters, and hence one has Γ1a = δ1a ρ

2, which renders
the Fisher matrix in the block-diagonal form. However,
for the complete signal, with the merger and the ring-
down pieces included, the correlation of A with the other
parameters becomes non zero, and the Fisher matrix is
no longer block-diagonal with respect to this parameter.
This implies that the complete waveforms provide more
information about A and, hence, about the effective dis-
tance deff .

Figures 6, 7 and 8 show the error estimates corre-
sponding to a fixed (single-detector) SNR of 10 in the
case of Advanced LIGO, Initial LIGO and Enhanced
LIGO noise spectra, respectively. It is interesting to note
that the parameter estimation using the complete wave-
forms is still much better than that using only the inspi-
ral waveform even though, in order to produce the same
SNR using inspiral templates, the effective distance to
the binary has to be often much smaller. The reason for
this can be understood through an analogy with param-
eter estimation with multiple detectors: Since the inspi-

ral phase, on the one hand, and the merger-ringdown
phases, on the other hand, occupy two contiguous and,
essentially, non-overlapping frequency-bands, the detec-
tion of a complete signal is equivalent to a coherent de-
tection of these two pieces of the waveforms by two coin-
cident, co-aligned detectors with sensitivities limited to
the two contiguous bands, respectively. The two phases,
however, are modulated by the two mass parameters in
complementary ways, in the sense that the Fisher sub-
matrices in the two-dimensional mass-space for these two
fiducial detectors grow more linearly independent of each
other, the larger the total mass gets, even while the total
coherent SNR of this fiducial detector pair is held con-
stant. This linear independence causes the estimation of
two mass parameters to improve. Contrastingly, since
the merger-ringdown pieces add very little information
about a system’s chirp-mass, the improvement in its ac-
curacy arising from using complete waveforms is much
less even for high mass systems.

Figure 9 plots the SNR produced at different detectors
by equal-mass binaries located at a fixed distance, as a
function of the total mass of the binary.

B. Monte-Carlo simulations

The limitations of the Fisher-matrix formalism are
well known [37, 38, 58]. The parameter-error bounds
provided by it are trustworthy in the limit of high SNR
and for parameters on which the signal has linear depen-
dence. In the case of low SNRs the error bounds com-
puted using the Fisher matrix formalism can be largely
different from the “actual” errors. Also, the Fisher ma-
trix does not recognize the boundaries of the parameter
space (such as the restriction η ≤ 0.25). Neither does it
account for practical restrictions such as the finite sam-
pling of the data. In order to explore these limits of
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η = 0.25 η = 0.2222 η = 0.16

ρ M = 20M⊙ 100M⊙ 200M⊙ 20M⊙ 100M⊙ 200M⊙ 20M⊙ 100M⊙ 200M⊙

∆M/M × 100

6 2.30 (1.52) 4.35 (3.80) 10.0 (5.59) 2.12 (2.15) 4.37 (4.31) 8.50 (6.58) 1.66 (1.80) 4.59 (4.58) 5.11 (5.74)

10 1.38 (0.93) 2.61 (2.39) 6.02 (3.57) 1.27 (1.50) 2.62 (2.60) 5.10 (4.49) 1.00 (1.16) 2.75 (2.58) 3.07 (3.61)

20 0.69 (0.46) 1.30 (1.11) 3.01 (1.94) 0.64 (0.76) 1.31 (1.20) 2.55 (2.73) 0.50 (0.60) 1.38 (1.21) 1.53 (1.81)

40 0.34 (0.19) 0.65 (0.51) 1.50 (0.95) 0.32 (0.34) 0.66 (0.56) 1.28 (1.33) 0.25 (0.25) 0.69 (0.61) 0.77 (0.83)

100 0.14 (0.07) 0.26 (0.18) 0.60 (0.31) 0.13 (0.11) 0.26 (0.20) 0.51 (0.46) 0.10 (0.08) 0.28 (0.24) 0.31 (0.28)

∆η/η × 100

6 4.30 (2.51) 10.9 (4.40) 18.8 (6.93) 3.94 (3.98) 11.5 (7.25) 20.2 (10.2) 3.06 (3.29) 12.5 (9.98) 23.6 (15.4)

10 2.58 (1.77) 6.54 (3.13) 11.3 (4.96) 2.36 (2.96) 6.87 (5.26) 12.1 (9.58) 1.84 (2.27) 7.53 (6.64) 14.2 (12.1)

20 1.29 (0.88) 3.27 (1.54) 5.64 (2.93) 1.18 (1.45) 3.44 (3.01) 6.06 (6.43) 0.92 (1.13) 3.76 (3.44) 7.07 (7.25)

40 0.64 (0.36) 1.63 (0.69) 2.82 (1.48) 0.59 (0.65) 1.72 (1.45) 3.03 (3.25) 0.46 (0.47) 1.88 (1.69) 3.54 (3.63)

100 0.26 (0.14) 0.65 (0.29) 1.13 (0.52) 0.24 (0.21) 0.69 (0.53) 1.21 (1.16) 0.18 (0.15) 0.75 (0.67) 1.41 (1.33)

∆Mc/Mc × 100

6 0.32 (0.94) 4.56 (3.86) 19.8 (7.92) 0.28 (1.16) 4.34 (4.64) 19.0 (10.6) 0.20 (1.16) 3.85 (4.22) 16.5 (12.0)

10 0.19 (0.31) 2.73 (2.62) 11.9 (5.56) 0.17 (0.35) 2.60 (3.20) 11.4 (9.30) 0.12 (0.26) 2.31 (2.76) 9.92 (9.51)

20 0.10 (0.10) 1.37 (1.24) 5.95 (3.23) 0.08 (0.13) 1.30 (1.65) 5.70 (6.24) 0.06 (0.09) 1.15 (1.45) 4.96 (5.52)

40 0.05 (0.03) 0.68 (0.55) 2.97 (1.64) 0.04 (0.05) 0.65 (0.68) 2.85 (3.14) 0.03 (0.03) 0.58 (0.59) 2.48 (2.67)

100 0.02 (0.01) 0.27 (0.20) 1.19 (0.57) 0.02 (0.01) 0.26 (0.26) 1.14 (1.11) 0.01 (0.01) 0.23 (0.23) 0.99 (0.97)

∆deff/deff × 100

6 16.7 17.6 24.6 16.7 17.5 24.3 16.7 17.4 23.2

10 10.0 10.5 14.8 10.0 10.5 14.6 10.0 10.4 13.9

20 5.00 5.27 7.39 5.00 5.26 7.30 5.00 5.21 6.95

40 2.50 2.63 3.70 2.50 2.63 3.65 2.50 2.61 3.48

100 1.00 1.05 1.48 1.00 1.05 1.46 1.00 1.04 1.39

∆t0(ms)

6 0.37 5.90 15.8 0.39 7.22 20.0 0.42 11.7 36.3

10 0.22 3.54 9.47 0.23 4.33 12.0 0.25 7.04 21.8

20 0.11 1.77 4.73 0.12 2.17 6.00 0.13 3.52 10.9

40 0.06 0.88 2.37 0.06 1.08 3.00 0.06 1.76 5.45

100 0.02 0.35 0.95 0.02 0.43 1.20 0.03 0.70 2.18

TABLE I: Errors in estimating different prameters of the binary, as a function of the binary parameters and the SNR, computed
using the Fisher matrix formalism. Same errors computed from the Monte-Carlo simulations are shown in brackets.

the Fisher formalism, we performed Monte-Carlo sim-
ulations, whereby maximum-likelihood detections were
made of simulated signals added to multiple statistically
independent realizations of simulated colored, Gaussian
noise. The aim of this frequentist study was to obtain the
spread in the maximum-likelihood estimates of the pa-
rameters and compare them with Fisher-matrix calcula-
tions. It is worth clarifying that there is another interest-
ing question one can pose in the context of parameter es-
timation, namely, “Given a specific signal and a particu-
lar noise realization, what are the posterior distributions
of the parameter estimates.” This is a question from
Bayesian statistics that can be answered using Markov-
Chain Monte-Carlo (MCMC) simulations, as explored
for inspiral-only waveforms in Refs. [78, 79, 80, 81]. We
do not answer that question here.

In this section we present results from the frequen-
tist Monte-Carlo simulation studies. These studies
largely corroborate the Fisher matrix calculations in the
parameter-space regions where the latter is expected to
be trustworthy. The simulations also allow us to com-
pute error-bounds in the parameter-space regions where

the Fisher matrix formalism can be unreliable (such as
for η ≃ 0.25). We caution the reader that this is not
meant to be an exhaustive comparison between Fisher-
matrix calculations and Monte-Carlo simulations. A
detailed comparison of Fisher matrix formalism with
Monte-Carlo simulations in the case of 3.5PN inspiral
signals can be found in the recent work Ref. [82].

Colored Gaussian noise with one-sided PSD Sh(f) is
generated in the frequency domain. If x̂k and ŷk de-
note the real and imaginary parts of the discrete Fourier
transform of the noise at the frequency bin k, these are
generated by

x̂k =
√

Shk
xk/2 , ŷk =

√

Shk
yk/2, (3.8)

where xk and yk are random variables drawn from a
Gaussian distribution of zero mean and unit variance,
and Shk

denotes the discrete version of Sh(f). Frequency
domain signal described by Eq.(2.11) is added to the
noise. The data is filtered through a matched filter em-
ploying templates described by Eq.(2.11). The likelihood
is maximized over t0 and ϕ0 as described in Sec. II. The
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FIG. 9: The curves labelled “IniLIGO” and “EnhLIGO” re-
port the SNR produced by binaries located at an effective
distance of 100Mpc at Initial LIGO and Enhanced LIGO, re-
spectively, as a function of the total mass. The curves labelled
“AdLIGO” and “AdVirgo” report the same produced by bi-
naries located at 1Gpc at Advanced LIGO and Advanced
Virgo. The solid lines correspond to complete waveforms and
the dashed lines correspond to PN waveforms.

FIG. 10: Scatter plot of parameters estimated from 104

Monte-Carlo simulations. The horizontal axis reports the
total mass and the vertical axis reports the symmetric mass
ratio. The left panel correspond to the injection with pa-
rameters M = 20M⊙ and η = 0.2222, and the right panel
correspond the injection with parameters M = 200M⊙ and
η = 0.2222. The injections correspond to an SNR of 20. Also
overlaid in the left panel is a cartoon of the four different ini-
tial simplexes chosen for the maximization algorithm. The
true values of the parameters is marked by a cross. Note that
the eigen directions are different in the two plots.

maximization over the physical parameters (M and η)
is best performed by filtering the data using a template
bank finely spaced in the parameter space. But, in order
to attain sufficiently good accuracy (say, 1%), a large
number of simulations needs to be performed. Thus,
computing error-bounds from a good volume of the pa-
rameter space is computationally expensive in a template
bank search. So, in this paper, the maximization over
the physical parameters is performed with the aid of the
computationally cheaper Nelder-Mead downhill simplex
algorithm [83].

We emphasize that this search may not be as accu-
rate as the template bank search. One reason for the

inaccuracy is that, in this method, we do not “sample”
the parameter space finely enough, and hence the “real
maximum” can very well be missed. This is especially
the case when the function that we want to maximise
(likelihood in this case) contains many secondary max-
ima. Indeed, it is well known that the the likelihood can
have many secondary maxima arising due to global cor-
relations in the parameter space. We bypass this issue
by starting the maximisation algorithm around the “ac-
tual” peak of the function. Hence, the error distributions
that we obtain are only indicative of the spread of the
MLM estimates around the primary maxima. Unlike in
the case of MCMC simulations, this does not provide a
complete picture of the posterior distribution of the pa-
rameters. Nevertheless, this is a worthwhile tool as an
independent verification of the Fisher matrix calculation,
enabling us to “scan”’ a good volume of the parameter
space using Monte-Carlo simulations 4.

Nelder-Mead’s algorithm is a multidimensional min-
imisation/maximisation algorithm. In order to maxi-
mize the required function, we need to specify an initial
“simplex” of n+1 dimensions where n is the dimension-
ality of the parameter space. Since the dimensionality
of our parameter space is 2, the simplex in our case is
a triangle. It is important for the good convergence of
the maximization that the initial simplex “catch” the
orientation of the ambiguity ellipses in our parameter
space, which often depends strongly on the parameters
themselves. Thus, we start the maximization by speci-
fying four different initial simplexes, whose vertices have
equal (coordinate) distance from the “true” value of the
parameters. The four triangles are oriented in different
directions in the parameter space. We choose the param-
eters corresponding to the best among the maximized
likelihoods as the parameters of the injection. Figure 10
shows a scatter plot of the parameters estimated from
104 simulations. Also overlaid in the left plot is a car-
toon of the initial simplexes chosen. The reader may note
the difference in the eigen-directions in the two plots.

We found that the following points need to be taken
care of while performing this kind of simulations: (i)
Since the frequency-domain templates are abruptly cut
off at the frequency fcut, we need to make sure that
the edges arising from this do not corrupt our numerical
calculations. This means that, for high mass systems
(M > 200M⊙) we cannot perform the simulations with
very high SNR (ρ > 100), because the cutoff frequency is
at the “sweet spot” of the detector. (ii) Sufficiently small
tolerance level for the maximization algorithm in order
to ensure that the “true” maximum is never missed. (iii)
Orthonormality of the search templates, as emphasized
by Ref. [38].

The frequency distributions of the estimated param-
eters M,η and Mc are shown in Fig. 11. The injection
corresponds to the parameter values M = 20M⊙ and
η = 0.16 and an SNR of 20. Also plotted in the fig-
ures are the expected distributions computed using the

4 In our simulations, a few hundred trials were sufficient for the
Nelder-Mead’s algorithm to converge to the fiducial maximum.
By contrast, a template bank search requires tens of thousands
of templates, in general.



13

19.5 20 20.5
0

1

2

3

4

M

p(
M

)

0.155 0.16 0.165
0

50

100

150

200

250

300

η

p(
η)

6.64 6.66 6.68
0

20

40

60

80

100

M
c

p(
M

c)
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Fisher matrix formalism. All the results are computed
using the AdvLIGO noise PSD. It can be seen that the
two calculations agree very well. Figure 12 shows the er-
rors computed using the Monte-Carlo simulations plot-
ted against the total mass of the binary for three differ-
ent values of η. The simulations are performed with an
SNR of 20. Also shown are the error-bounds computed
using the Fisher matrix formalism. In the case of mass
ratios η = 0.2222 and η = 0.16, the simulations agree
well with the Fisher matrix calculations. But the simu-
lations disagree with the Fisher calculations for the case
of η = 0.25. This is expected because the Fisher matrix
does not recognize the physical restriction that η can
only take values less than, or equal to 0.25. The Fisher
matrix calculation assumes that the errors in estimat-
ing the parameters are Gaussian distributions centered
around η = 0.25, while the Monte-Carlo simulations en-
force the restriction η ≤ 0.25. As a result the error
bounds estimated by the Monte-Carlo simulations will
be less than that estimated by the Fisher matrix.

Fisher matrix calculations assume that the errors de-
crease inversely proportional to the SNR. But this ap-
proximation is not valid at low SNRs. So we have per-
formed Monte-Carlo simulations with various SNRs in
order to study the SNR dependence of the errors. Fig-
ure 13 plots the errors estimated from the simulations
against the SNR of the injections. The top, middle and
bottom panels in the figure correspond to mass ratios
η = 0.25, 0.2222 and 0.16, respectively. The different
markers correspond to the Monte-Carlo simulations and
the dashed lines correspond to the Fisher matrix calcu-

lations. It can be seen that, barring the case of η = 0.25,
the simulations agree very well with the Fisher calcula-
tions in the limit of high SNRs (ρ > 10). Because of
the η-boundary effects, the errors computed from the
η = 0.25 simulations are less than those computed from
the Fisher calculations. For small SNRs (ρ ≤ 10), the
simulation errors start to deviate from the Fisher calcu-
lations. There are two reasons for this: (i) at low SNRs,
as observed by many others (see, for e.g., Ref. [38]) the
Fisher matrix largely underestimates the errors. This
is the dominating effect in the case of M = 20M⊙ bi-
naries at low SNRs in Fig. 13. (ii) at low SNRs, since
the size of the ambiguity ellipses are increased, they are
cut by the η = 0.25 boundary, which is neglected by
the Fisher calculations. Hence the Fisher matrix over
estimate the errors. This is the dominating effect in the
case ofM = 200M⊙ binaries at low SNRs. It is the inter-
play between these two competing effects that causes the
discrepancy between the simulations and Fisher calcula-
tions. In summary, the results from the Monte-Carlo
simulations, albeit the limitations of the maximization
algorithm used, should be more reliable than the Fisher
calculations.

Table I tabulates the errors in the case of Advanced
LIGO noise PSD, computed using both Fisher matrix
and Monte-Carlo simulations.
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IV. PARAMETER ESTIMATION:

MULTI-DETECTOR SEARCH

With a sufficiently large number of geometrically in-
dependent and well-separated interferometric detectors
it is possible to measure all nine of the BBH parameters
of an adequately strong source [84, 85]. To assess how
accurately such a measurement can be made with the
AdvLIGO-AdvVirgo network, one can begin by comput-
ing the Fisher matrix in the nine-dimensional parameter
space, and then invert it to obtain the error variance-
covariance matrix. We take the network to comprise
three interferometers, with one each at Hanford (WA),
USA, Livingston (LA) USA, and Cascina, Italy. The
LIGO detectors in Hanford and Livingston are assumed
to be having the AdvLIGO noise PSDs given in Eq.(3.3)
and the Virgo detector in Cascina is assumed to be hav-
ing the AdvVirgo noise PSD given in Eq.(3.4).

When interpreting the astrophysical implications of
these parameter errors, it is important to remember that
it is only when the signal is linear in the parameters or
the SNR is large that the maximum-likelihood estima-
tor is unbiased and the error deduced from the Fisher
matrix achieves the Cramér-Rao bound [55]. To aid this
conformity, we map four of the six extrinsic signal pa-
rameters (i.e., parameters that depend on the observers
location in time and space), viz., (A, ψ, ι, ϕ0), into new

parameters, ak, with k =1,...,4, such that the signal in
Eq. (2.3) at any given detector has a linear dependence
on them:

h(t) =

4
∑

k=1

akhk(t) , (4.1)

where the hk(t)’s are completely independent of those
four extrinsic parameters. (The two remaining extrinsic
parameters are the sky-position angles.) To deduce their
dependencies as well as the forms of the ak’s we begin by
noting that the antenna-pattern functions can be treated
as the components of a vector that are related to two sky-
position dependent functions, u(θ, φ) and v(θ, φ) [41, 85],
through a two-dimensional rotation by 2ψ:

(

F+

F×

)

=

(

cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ

)(

u

v

)

. (4.2)

With this well-known observation, one finds

h1(t) ∝ u(θ, φ) cos[ϕ(t)] ,

h2(t) ∝ v(θ, φ) cos[ϕ(t)] ,

h3(t) ∝ u(θ, φ) sin[ϕ(t)] ,

h4(t) ∝ v(θ, φ) sin[ϕ(t)] , (4.3)

where the proportionality factor is a dimensionless
(mass-dependent) function of time.
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FIG. 14: The network SNR of a signal, corresponding to
the complete waveform, from an equal-mass binary with
M = 100M⊙ located at dL = 1Gpc, plotted as a function
of its sky-position. The network here is the three detector
AdvLIGO-AdvVirgo network, such that the two 4km-arm-
length LIGO detectors in Hanford and Livingston have Ad-
vLIGO noise PSDs and the Virgo detector in Cascina has
AdvVirgo noise PSD. Above, θ and φ are the polar and az-
imuthal angles specifying the location of the source in the
sky in the geographic coordinate system.

The new parameters are themselves defined as

Ma ≡

(

a1 a3

a2 a4

)

=
y(ι)

dL
Oϕ0

· I · O2ψ , (4.4)

where y(ι) ≡
[

(

1 + cos2 ι
)2

+ 4 cos2 ι
]1/2

, Oα is the two-

dimensional orthonormal rotation matrix for angle α and

I ≡

(

(

1 + cos2 ι
)

/y(ι) 0

0 2 cos ι/y(ι)

)

. (4.5)

The Fisher matrix is then computed on the space
(M,η, θ, φ, t0, a

1, a2, a3, a4). The errors in the ak’s are
obtained by inverting that matrix. By using error-
propagation equations obtained from Eq. (4.4), we are
able to deduce error estimates for all four extrinsic pa-
rameters.

In this paper, however, we present the error esti-
mates for, perhaps, the most astrophysically interesting
of those, namely, the luminosity distance. To obtain it,
first notice that

tr
(

MT

a Ma

)

= ‖a‖2 =
y2(ι)

d2
L

, (4.6)

where tr is the trace, and ‖a‖2 ≡
∑4

k=1

(

ak
)2

. This
yields

d (dL)

dL
=

dy

y
−

d‖a‖

‖a‖
, (4.7)

which can then be used to deduce the rms error, ∆dL/dL
by accounting for the covariance between y and ak. Fi-
nally, we choose a flat prior in y(ι), such that whenever

its estimate is negative or greater than its maximum pos-
sible value (of four) the prior is set to zero. The distance
errors plotted below are for such a prior.

The error variance-covariance matrix described above
can also be used to derive the error estimates for the
other astrophysically interesting quantity, namely, the
sky-position. Here again, to further keep our assess-
ment robust, we first reduce the dimensionality of the
Fisher matrix to five by projecting out the four above-
mentioned extrinsic parameters. This helps in lower-
ing the condition number of the Fisher matrix across
the parameter space. We do so by taking a cue from
Refs. [84, 85], where it was shown that the network like-
lihood ratio of compact binary inspiral signals can be
maximized analytically over those four extrinsic param-
eters. Moreover, just as for the signal in a single detec-
tor, it is possible to speed up the search in t0 by using
the FFT [85]. Thus, the only parameters that need to
be searched numerically through the help of a template
bank [86] are the following four parameters: (M,η, θ, φ).

The resulting Fisher matrix is well-behaved every-
where in the five-dimensional sub-space except on a set
of points of measure zero, where the detectors in the net-
work cease to be geometrically independent. Its inverse
yields the error estimates for the two mass parameters
and the sky-position. A sky-map of the network SNR
is presented in Fig. 14 while the sky-maps of the errors
in the source luminosity-distance and the sky-position
are given in Fig. 15 for equal-mass BBH sources with
M=100M⊙ and located at dL = 1Gpc.

Figure 16 shows the all-sky distribution of the errors
in estimating the solid angle Ω. The left plots show
the probability density and the right plots show the cu-
mulative distribution. We assume that the sources are
distributed uniformly across the sky. Top panels cor-
respond to a binary with M = 20M⊙ and η = 0.25,
and the bottom panels to a binary with M = 100M⊙

and η = 0.25. In each plot the thick (red) traces corre-
spond to the errors estimated using the complete wave-
forms while the thin (black) traces correspond to those
estimated using restricted 3.5PN waveforms in the SPA
truncated at Schwarzschild ISCO. All the errors are com-
puted for a network SNR of 10 for the respective wave-
forms. The error-estimates are obtained by averaging
over the angles (ψ, ι). These plots show that in the case
of an M = 20M⊙ and η = 0.25 binary, assuming that
the sources are distributed uniformly across the sky, the
sky-position of 70% [10%] of the sources can be estimated
with an accuracy better than 1 [0.1] square degree. Us-
ing PN templates, the sky-location of only 29% [6%] of
the sources can be estimated with an accuracy better
than 1 [0.1] square degree. For the M = 100M⊙ binary,
the sky-position of 90% [18%] of the sources can be es-
timated with an accuracy of 1 [0.1] square degree using
complete waveforms, while only 15% [4%] of the sources
can be resolved with the same accuracy using inspiral
waveforms. It should be noted that in that figure we
have normalized the errors for SNR fixed to 10. For real
systems additional improvement might be seen from the
use of the complete waveforms provided their inclusion of
merger and ringdown phases actually improves the SNR
of those signals. This is indeed the case for high-mass
systems (M > 20M⊙). For an equal-mass binary with
M = 20 [100]M⊙, the improvement in the SNR by the
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FIG. 15: The left plot shows the sky-position error log
10

[∆Ω (in square-degrees)] and the right plot shows the fractional error
in the luminosity distance log10[∆dL/dL (in %)] as functions of the sky-position of a BBH source. The source studied here is
the same equal-mass binary considered in Fig. 14, and, θ and φ are the polar and azimuthal angles specifying the location of
the source in the sky in the geographic coordinate system. Note how the effect of the varying network sensitivity, as seen in the
SNR plot in Fig. 14, is imprinted in the two error plots. Additionally, the error plots display a full “sine-wave” pattern, which
comprises a set of sky-positions for which the geometric independence of the LIGO-Virgo detectors is the weakest. Extraction
of the signal’s polarization is affected the most at these locations. That in turn hurts the distance measurement accuracy.
The same locations do not necessarily hurt the determination of the sky-position, which is mostly driven by the measurement
accuracy of the times-of-arrival of the signal at the three sites.
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FIG. 16: All-sky distribution of errors in estimating the solid
angle Ω in the case of AdvLIGO-AdvVirgo network. The
left plots show the probability density and the right plots
show the cumulative distribution. The top panels correspond
to an equal-mass binary with M = 20M⊙, and the bottom
panels to one with M = 100M⊙. In each plot the thick (red)
traces correspond to the errors estimated using the complete
waveforms while the thin (black) traces correspond to those
estimated using restricted 3.5PN waveforms. All the errors
are computed for a network SNR of 10 for the respective
waveforms.

inclusion of merger and ringdown is 9% [300%], in sta-
tionary, Gaussian noise. (See the discussion of Fig. 18
below.)

Figure 17 shows the distribution of the errors in esti-
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FIG. 17: All-sky distribution of errors in estimating dL in the
case of AdvLIGO-AdvVirgo network. The left plots show the
probability density and the right plots show the cumulative
distribution. The top panels correspond to an equal-mass
binary with M = 20M⊙, and the bottom panels to one with
M = 100M⊙. In each plot the thick (red) traces correspond
to the errors estimated using the complete waveforms while
the thin (black) traces correspond to those estimated using
restricted 3.5PN waveforms. All the errors are computed for
a network SNR of 10 for the respective waveforms.

mating the luminosity distance dL to two different types
of equal-mass binary systems, both producing a network
SNR of 10 in the AdvLIGO-AdvVirgo network. The
top panels correspond to a binary with M = 20M⊙ and
the bottom panel to a binary with M = 100M⊙. As
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FIG. 18: Same as Fig. 16 except that the binary is now placed
at a fixed luminosity distance of 1Gpc. Notice the strong sim-
ilarity between the plots in the top panel above and those in
the top panel of Fig. 16. This is because in the plots of the
top panel above the average SNR is relatively close to 10.
The plots in the bottom rows of the two figures are more dis-
parate: The average SNR above is several [few] times better
than the fixed SNR in Fig. 16 for the complete [inspiral-only]
waveforms.
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FIG. 19: Same as Fig. 17 except that the binary is placed
at a fixed luminosity distance of 1Gpc. By comparing the
above figure with Fig. 17, it is manifest that nearly all the
improvement in the luminosity-distance measurement accu-
racy, when including the post-inspiral phases, arises due to
the increased SNR.

in Fig. 16, the thick (red) traces correspond the com-
plete waveforms while the thin (black) traces correspond
to the PN waveforms. These plots suggest that for an
SNR of 10 the luminosity distance to around 10%[50%]
of the sources can be estimated with an accuracy of bet-
ter than 38%[53%] in the case of low-mass systems. They
also reveal that, for a fixed value of the network SNR,

the error estimates using inspiral and complete wave-
forms are almost identical. This is not surprising be-
cause for low-mass systems the signal is dominated by
the inspiral phase. In the case of high-mass systems
with an SNR of 10, the luminosity distance to around
10%[50%] of the sources can be estimated with an accu-
racy of 60%[100%]. These errors are worse than those
for the PN waveform 5 primarily because the covariances
between the initial phase and (ψ, ι) are stronger in the
case of complete waveforms. This property of the com-
plete waveforms mitigates the estimation accuracy of ι,
which, in turn, affects the estimation of dL.

Figures 18 and 19 show the errors in estimating Ω and
dL in the case of binaries distributed uniformly across the
sky but located at a luminosity distance of 1Gpc. These
errors also are averaged over ψ and ι. These plots show
that in the case of an equal-mass binary withM = 20M⊙

the sky-position of around 10%[50%] of the sources can
be estimated with a resolution of 0.07[0.5] square de-
gree or better. In the case of a M = 100M⊙ binary,
10%[50%] of the sources can be estimated with a resolu-
tion of 0.01[0.1] square degrees. These plots in Fig. 18
also show that the coherent addition of the merger and
ringdown phases brings about remarkable improvement
(i.e., by several times for most sky-positions) in the es-
timation of Ω.

Figure 19 shows that the luminosity distance of
10%[50%] of the M = 20M⊙ BBH sources can be es-
timated with 32%[47%] accuracy or better and that of
10%[50%] of the M = 100M⊙ binaries can be estimated
with an accuracy of 13%[20%] or better. While compar-
ing Figs. 17 and 19, it may help to track the mean errors
listed in Table II. Studying these plots and numbers
reveals some interesting aspects of these signals. First,
for the PN waveforms the distance error improves only
slightly in going from an SNR of 10 to a source distance
of 1Gpc. This is easily explained by the fact that the
sky-averaged SNR of these systems at dL=1Gpc is only
slightly greater than 10. Second, the distance error re-
duces a little for complete waveforms vis à vis inspiral
ones at 1Gpc. This is mainly due to the increased SNR of
the former. Third, the error for the complete waveforms
for the M = 100M⊙ system at 1Gpc is still the small-
est of all the cases studied here because its sky-averaged
SNR is sufficiently large; indeed, it is large enough to
even compensate for the increased covariance between ϕ0

and (ψ, ι) arising from the merger and ringdown phases,
as discussed above.

5 Note that, in order to get the same SNR in the case of PN
waveforms, the binary must be placed at a much closer distance.
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ρ = 10 dL = 1Gpc

M/M⊙ ∆Ω ∆dL/dL ∆Ω ∆dL/dL

20 0.78 (2.2) 55.7% (55.3%) 0.70 (2.1) 43.2% (46.8%)

100 0.55 (8.9) 111% (63.1%) 0.13 (5.9) 23.0% (39.8%)

TABLE II: Sky-averaged errors in estimating Ω and dL using
complete BBH waveforms in the case of AdvLIGO-AdvVirgo
network. The left column tabulates the errors corresponding
to a fixed value ρ = 10 for the network SNR, while the right
column tabulates the errors corresponding to a fixed value
dL = 1Gpc of the luminosity distance. Errors computed
using PN templates are shown in parentheses. The Ω errors
are given in square degrees and the fractional dL errors are
given in percentage.

Finally, we compare our results with a couple of past
studies in the form of Refs. [36, 41]. First, both these
early studies used the same noise PSD for both LIGO
and Virgo detectors. Second, their noise PSD was dif-
ferent from both the AdvLIGO and the AdvVirgo noise
PSDs used here; it made their detectors more sensitive
(by a factor of a few in amplitude) in the band below
70Hz and somewhat less sensitive at higher frequencies
than the AdvLIGO PSD used here. Third, they consid-
ered only inspiral signals from binary neutron stars with
a component mass of 1.4M⊙, and distributed them uni-
formly across a spatial volume. Fourth, in Ref. [41] the
authors culled every source that gave a distance error of
greater than 100% or that had an SNR of less than 8.5.
In our study, where all sources were kept at a fixed dis-
tance of 1Gpc, none of them were culled. Also, whereas
all our sources with M = 100 M⊙ have an SNR greater
than about 25, those with M = 20 M⊙ have the small-
est SNR equal to 6. These differences make it difficult to
compare these different studies. It is, however, possible
to make some limited comparisons. Specifically, Fig. 15
in Ref. [41] suggests that the fractional errors in the esti-
mated source distances all tend to be greater than 100%
as their source distance approaches 1Gpc. Figure 14 of
Ref. [36] depicts a similar trend. This appears to be
consistent with our numbers.

V. SUMMARY

In this paper, we studied the statistical errors in es-
timating the parameters of non-spinning BH binaries
using ground-based GW observatories. Our study was
restricted to the leading harmonic of the GW polariza-
tions of such sources; but employing waveforms mod-
elling the inspiral, merger and ring-down stages of the
binary coalescence. We obtain results both for single-
and multi-detector searches. The single-detector prob-
lem was investigated in the context of two generations
of ground-based detectors, namely, Initial LIGO and Ad-
vanced LIGO, as well as Enhanced LIGO, with interme-
diate sensitivity. On the other hand, the multi-detector
problem was investigated in the context of the Advanced
LIGO-Advanced Virgo network. For these calculations,
we adopted a two-pronged approach: We first analyti-
cally computed the error bounds using the Fisher-matrix
formalism. We then pointed out the limitations of this

approach and improved upon those calculations by full-
fledged Monte-Carlo simulations.

To summarize, we find that with an Advanced LIGO
detector the total mass of an equal-mass binary with
M = 20M⊙[100M⊙] located at 1 Gpc can be estimated
with an accuracy of ∼ 0.67[∼ 0.34]%, while its sym-
metric mass ratio can be estimated with an accuracy
of ∼ 1.26[∼ 0.84]%. The effective distance can be es-
timated with an accuracy of ∼ 4.87[∼ 1.36]% and the
time-of-arrival can be placed within ∼ 0.11[∼ 0.46] ms.
We considered binaries with three different mass ratios
(η = 0.25, 0.2222, 0.16) in the range 10M⊙ ≤ M ≤
450M⊙ for these calculations. These results predict for
a significantly more accurate astrophysical characteriza-
tion than what has been presented in the past literature
(which use the post-Newtonian waveforms intended to
model only the inspiral stage of the binary). To wit, the
error-bounds for total mass, computed using the com-
plete waveforms is better than those computed using the
inspiral-only waveforms by a factor of ∼ 1.4 [∼ 16] for an
equal-mass binary with total mass 20M⊙[100M⊙]. The
error-bounds on the symmetric mass ratio is improved
by a factor of ∼ 1.4 [∼ 15], those on the time-of-arrival
is improved by a factor of ∼ 7 [∼ 34] and those on the
effective distance is improved by a factor of ∼ 1.1 [∼ 4]
by the inclusion of the merger and ringdown stages.

In the case of a network consisting of two Advanced
LIGO detectors and one Advanced Virgo detector, we
found that the luminosity distance to an equal-mass bi-
nary with M = 20M⊙ at 1Gpc can be estimated with
a sky- and orientation-averaged accuracy of 43.2% and
the sky location can be estimated with a mean accu-
racy of 0.7 square degrees. For a similar binary, but
with M = 100M⊙, the respective mean accuracies are
23% and 0.13 square degrees. For low-mass binaries,
with (M ∼ 20M⊙), the improvement in the sky-position
accuracy due to the inclusion of merger and ringdown
is about a factor of 3, while for high-mass binaries
(M ∼ 100M⊙), that improvement is by a factor of 45.
The inclusion of the same two phases betters the distance
estimates by a few (for low mass systems) to several (for
high mass systems) percent. In short, the sky resolution
is greatly improved by the inclusion of merger and ring-
down, while the improvement in the estimation of the
luminosity distance arises largely from the extra SNR
contributed by the merger and ringdown.

In the case of the AdvLIGO-AdvVirgo detector net-
work, the parameter-estimation accuracy peaks for bi-
naries with M ≃ 100M⊙. Although the observational
evidence for BHs in this mass range is only suggestive,
there is growing consensus in the astronomy community
that IMBHs could exist in dense stellar clusters. The ex-
istence of this class of black holes could explain a number
of observations, such as the ultraluminous X-ray sources
and the excess dark matter concentration in globular
clusters.

Several authors have considered the scenario of the co-
alescence of IMBHs and have come up with coalescence-
rate predictions [11, 13]. Particularly interesting is the
case of the merger of two stellar clusters each hosting
an IMBH considered in Ref. [11]. Since this is expected
to be a strong source of GW signal with a possible EM
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counterpart 6, it is a worthwhile question to ask what
kind of constraints can be put on the values of cosmolog-
ical parameters by combining GW and EM observations
of such sources [30]. The improved parameter estimation
might help to tighten these constraints. This is being in-
vestigated in an ongoing work [87].
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