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Abstract

Constraints of the osp(6|4) symmetry on tree-level scattering ampli-
tudes in N' = 6 superconformal Chern-Simons theory are derived.
Supplemented by Feynman diagram calculations, solutions to these con-
straints, namely the four- and six-point superamplitudes, are presented
and shown to be invariant under Yangian symmetry. This introduces
integrability into the amplitude sector of the theory.
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1 Introduction and Overview

While the prime example of the AdS/CFT correspondence is the duality between four-
dimensional NV = 4 super Yang-Mills theory (SYM) and type IIB superstring theory on
AdS; x S? [1], another remarkable instance equates N' = 6 superconformal Chern—Simons
theory in three dimensions (SCS) and type IIA strings on AdS; x CP? [2]. In the study
of the spectrum on both sides of these two correspondences, the discovery of integrability
[3-9] in the planar limit has been of crucial importance, and has lead to the belief that
the planar theories might be exactly solvable.

Exact solvability would suggest that integrability also manifests itself in the scattering
amplitudes of the above theories. For the AdS;/CFT, correspondence, this is indeed the
case. Motivated by a duality between Wilson loops and scattering amplitudes in N = 4
SYM theory [10], a dual superconformal symmetry of scattering amplitudes was found
at weak coupling [11]. This dual symmetry can be traced back to a T-self-duality of
the AdS; x S° string background [12,13] (see also [14] for a review). In addition to
the standard superconformal symmetry, the dual realization acts on dual momentum
variables leaving all N' = 4 SYM tree-level amplitudes invariant [15]. Integrability at
weak coupling then arises as the closure of standard and dual superconformal symmetry
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into a Yangian symmetry algebra for tree-level scattering amplitudes [16]. In fact, N =
4 SYM tree-level amplitudes seem to be uniquely determined by a modified Yangian
representation that takes into account the peculiarities of collinear configurations due to
conformal symmetry [17-19].

On the other hand, little is known about scattering amplitudes in the AdS,/CFT;
correspondence. For N = 6 SCS, so far only four-point amplitudes have been computed
[20]. In particular, while some possibilities for T-self-duality have been explored [21], no
direct analog of dual superconformal symmetry was found for this theory.

Given the perturbative integrability of the spectral problem of N' = 6 SCS theory
paralleling the discoveries in the AdS;/CFT, case, and the recent findings on scattering
amplitudes in the latter, it seems reasonable to search for integrable structures (alias
Yangian symmetry) in A/ = 6 SCS scattering amplitudes. In the absence of a dual
symmetry, a straightforward generalization of the developments in A/ = 4 SYM appears
to be obscured. Even without a dual symmetry, however, a procedure to consistently
promote certain standard Lie algebra representations to Yangian representations is well-
known [22,23,16]. That is, Yangian generators that act on scattering amplitudes in a
similar way as in N' = 4 SYM can be constructed directly. However, a priori it is not
true that invariants of the standard Lie algebra representation are also invariant under
the Yangian algebra. Invariance of scattering amplitudes under the Yangian generators
would be a manifestation of integrability.

The standard osp(6]4) symmetry of N' = 6 SCS is realized on the tree-level amplitudes

Atree ag a sum of the action of the free generators 3&% on the individual legs k,

IO AL =330 Al = 0. (1.1)
k=1

For scattering amplitudes in N' = 4 SYM, as well as for local gauge invariant operators
both in N' =4 SYM and in NV = 6 SCS, the Yangian generators 38) at tree-level are
realized according to the construction of [22,23]: They act as bilocal compositions of
standard symmetry generators,

RS SO DR (1.2)
j<k
Hence these are also natural candidates for Yangian symmetry generators for N' = 6
SCS scattering amplitudes.

In this paper, the constraints of the 0sp(6]4) (level-zero) symmetry algebra on n-point
scattering amplitudes are analyzed. The four- and six-point superamplitudes of N = 6
SCS theory are given as solutions to these constraints, and are shown to be invariant
under the Yangian (level-one) algebra constructed as described above. This introduces
integrability into the amplitude sector of N' = 6 SCS theory.

Outline

The paper is structured as follows: In Section 2, the kinematics for three-dimensional field
theories are discussed, and momentum spinors are introduced. An on-shell superspace



and the corresponding superfields for N'= 6 SCS are presented in Section 3, where also
color-ordering is discussed. The realization of the symmetry algebra osp(6|4) in terms
of the superspace variables is exhibited in Section 4. In Section 5 the invariants of this
realization are studied. The four- and six-point tree-level superamplitudes are presented
in Section 6. In Section 7, the realization of the osp(6]|4) Yangian algebra is analyzed and
shown to be consistent by means of the Serre relations. Yangian invariance of the four-
and six-point amplitudes is shown. Finally, our conventions as well as several technical
details, including the computation of two six-point component amplitudes from Feynman
diagrams, are presented in the appendix.

2 Three-Dimensional Kinematics

Momentum Spinors. The Lorentz algebra in three dimensions is given by so0(2,1)
being isomorphic to s[(2; R). Thanks to this isomorphism, a so0(2, 1) vector equivalently
is a s[(2;R) bispinor. More explicitly, three-dimensional vectors can be expanded in a
basis of symmetric matrices o*,

0_ 1 2
ab w\ab o p =P p
= (o = , 2.1
p (0") D < P2 0+ pl) (2.1)
and any symmetric 2 x 2 matrix p® can be written as

p = Ay (2.2)

By means of the identifications (2.1,2.2), the square norm of the vector p* equals the
determinant of the corresponding matrix:

a a 2
P'pu = —det(p”) = — (Neapt”)” . (2.3)
In particular, this means that the masslessness condition p? = 0 can be explicitly solved
pr = AN (2.4)

Given a massless momentum, the choice of A\* in (2.4) is unique up to a sign being the
manifestation of the fact that the group SL(2;R) is the double cover of SO(2,1). That
the sign is the only freedom in the choice of A* is due to the fact that the little group
of massless particles! is discrete in three dimensions. For massive momenta on the other
hand, the choice of A%, u® in (2.2) has an Rt x U(1) freedom

A = e\, pt — pt/e, ce Cyo . (2.5)

In particular this contains the little group U(1) of massive particles? in three dimensions.
Some comments on reality conditions for \* are in order. Physical momenta are real;
this means that A® can be either purely real or purely imaginary. For positive-energy

1SO(d — 2) in d dimensions.
250(d — 1) in d dimensions.



Lorentz Conformal Lightlike Little Superconformal
SO(d—1,1) | SO(d,?2) Momentum Group Group
= SL(2;R) SP(4;R) p® = \2\P Zs OSP(4|N<s)
=4 | SL(2;C) | SU(2,2) ptb = Na)b U(1) (P)SU(2, 2| N<y)
SL(QH) . p[AB] — €ab)\Aa)\Bb
d=6 i SO*(8 Ya Vi SU(2)2 | OSP(8]2), OSP(8|4
e ® | Nk | SUEP | OSP(sR). OSP(sY

Table 1: Spinor-helicity formalism and superconformal symmetry in various
dimensions.

momenta (p® > 0), \* is purely real, while it is purely imaginary for negative-energy
momenta. Even for complex momenta, p® is expressed in terms of a single complex \
as in (2.4). This seems very different to the four-dimensional case, where momenta can
be written as _ _

iy = AN, (2.6)
and \* and A are independent in complexified kinematics. In Minkowski signature, \*
and A are actually complex conjugate to each other. This is the origin of the holomorphic
anomaly [24]. Looking at (2.4), nothing similar appears to happen in three dimensions
if one imposes the correct reality conditions.

It is worth noting that the existence of a spinor-helicity framework in a certain di-
mension is intimately connected to the existence of superconformal symmetry in that
dimension, cf. Table 1. For the six-dimensional case the spinor-helicity formalism has
been recently applied to scattering amplitudes in [25].

Kinematical Invariants. In terms of momentum spinors, two-particle Lorentz invari-
ants can be conveniently expressed as

Mulivs = —3(12)%, (k) == ANewy . (2.7)

It is easy to count the number of (independent) Poincaré invariants that can be built out
of n massless three-dimensional momenta. Every spinor carries two degrees of freedom
resulting in 2n variables for n massless momenta. The number of two-particle Lorentz
invariants one can build from these is 2n—3, where 3 is the number of Lorentz generators.
This can be explicitly done using Schouten’s identity

(D)) + (ki) (5l) + (k) {li) = 0.

Finally, total momentum conservation imposes three further constraints, such that the
number of Poincaré invariants is 2n — 6. Note that for n = 3 there is no Poincaré
invariant, even in complex kinematics.

(2.8)

One-Particle States. One-particle states are solutions of the linearized equation of
motion. This equation is an irreducibility condition for the representation of the Poincaré
group. For massless particles, these Poincaré representations are lifted to representations



of the conformal group SO(d,2). Once again, the existence of the spinor formulation in
three dimensions makes it possible to explicitly solve the irreducibility condition.

For scalars, the irreducibility condition is trivially satisfied by an arbitrary function
of the massless momentum:

Po™) =0 = ¢(™)=o(\"N). (2.9)

For fermions, the irreducibility condition is given by the Dirac equation, which forces
the fermionic state ¥, to be proportional to €4\,

pT () =0 = W(p™) = eapA"P(ANY) . (2.10)

Thus when A\* changes its sign, the scalar state is invariant, while the fermionic state
picks up a minus sign. Once again, this just corresponds to the fact that fermions are
representations of Spin(2,1) ~ SL(2;R), which is the double cover of SO(2,1). Put
differently,
0
exp(iﬁ)\aw> State) = (—1)”|State), (2.11)

where F denotes the fermion number operator.

It is worth mentioning that these representations of the conformal group SO(3,2) ~
Sp(4,R) have a long history. They go back to Dirac [26] and were particularly studied
by Flato and Fronsdal in an ancestor form of the AdS/CFT correspondence [27].

3 Superfields and Color Ordering

Field Content. The matter fields of N' = 6 superconformal Chern—Simons theory
comprise eight scalar fields and eight fermion fields that form four fundamental multiplets
of the internal su(4) symmetry:

PN, da(N), wa(N), AN, A€ {1,2,3,4}. (3.1)

The fields ¢* and 14 transform in the (N, N) representation, while ¢4, ¥* transform in
the (N, N) representation of the gauge group U(N) x U(N).? The former shall be called
“particles”, the latter “antiparticles”. In addition, the theory contains gauge fields A,,,
Au that transform in (ad, 1), (1,ad) representations of the gauge group. The gauge
fields however cannot appear as external fields in scattering amplitudes, as their free
equations of motion 9,A4,) =0 = 8[ufll,} do not allow for excitations.

Superfields. For the construction of scattering amplitudes, it is convenient to employ a
superspace formalism, in which the fundamental fields of N' = 6 superconformal Chern—
Simons theory combine into superfields and supersymmetry becomes manifest. In N' = 4
SYM, the fields (gluons, fermions, scalars) transform in different representations of the
internal symmetry group. Thus in the superfield of N' = 4 SYM, the fields can be
multiplied by different powers of the fermionic coordinates n* according to their different

3N: Fundamental representation of U(N), N: Antifundamental representation of U(N).
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representation. Internal symmetry, realized as R4 ~ n9/0n", is then manifest. All
particles in A/ = 6 SCS form (anti)fundamental multiplets of the internal su(4) symmetry.
Thus an analogous superfield construction, i.e. one in which R-symmetry only acts on the
fermionic variables, seems obstructed for this theory. Nevertheless, by breaking manifest
R-symmetry, one can employ N' = 3 superspace, in which the fundamental fields combine
into one bosonic and one fermionic superfield with the help of an su(3) Grafimann spinor

n,
D(A) = ¢*(N) + ' a(N) + 2eapen™n® ¢ (N) + eapen” 77 n“va(N),
B(A) = V' A) + 0 0a(N) + 2eapen PO (N) + Leapen™n®nCea(N). (3.2)

Here and in the following, A is used as a shorthand notation for the pair of variables
(A,n). Introducing these superfields amounts to splitting the internal su(4) symmetry
into a manifest u(3), realized as R 5 ~ n9/9n?, plus a non-manifest remainder, realized
as multiplication and second-order derivative operators. For the complete representation
of the symmetry group on the superfields, see the following Section 4.

Using the superfields, scattering amplitudes conveniently combine into superampli-

tudes X R - -
A, = A (D1, Do, Ps, ..., D), Ppi=D(Ay) . (3.3)

Component amplitudes for all p0581b1e conﬁguratlons of fields then appear as coefficients
of A, in the fermionic variables nt, ik

Color Ordering. In all tree-level Feynman diagrams, each external particle (antiparti-
cle) is connected to one antiparticle (particle) by a fundamental color line and to another
antiparticle (particle) by an antifundamental color line.* Tree-level scattering amplitudes
can therefore conveniently be expanded in their color factors:

i A 3 B2 5. A z o1 §Boy Ao Boy,
A @8, Dol 050 5 = 3 Ao A )R 0RO 0 (3.4)
S ( n/2 X Sn/2)/cn/2

Here, the sum extends over permutations o of n sites that only mix even and odd sites
among themselves, modulo cyclic permutations by two sites. By definition, the color-
ordered amplitudes A,, do not depend on the color indices of the external superfields.
The total amplitude A, is invariant up to a fermionic sign under all permutations of
its arguments. Therefore the color-ordered amplitudes A, are invariant under cyclic
permutations of their arguments by two sites,

An(Ag, . Ay Ay Ay) = (=)D 4 (A, A, (3.5)

where the sign is due to the fact that @ is bosonic and @ is fermionic. While the
color-ordered component amplitudes can at most change by a sign under shifts of the
arguments by one site,” the superamplitude A, might transform non-trivially under

4This implies in particular that only scattering processes involving the same number of particles and
antiparticles are non-vanishing.

5A single-site shift amounts to exchanging the fundamental with the antifundamental gauge group,
which equals a parity transformation in A/ = 6 SCS [2].

7



ﬁab -2

D

1
R
-2 -1 0 1 2 u(1)

Figure 1: The generators of osp(6|4) can be arranged according to their dilata-
tion charge and their u(1) charge under €.

single-site shifts, as the definition of A, (A, ..., A4,) in (3.4) implies that A,qd/even belong
to bosonic/fermionic superfields.

For the color-ordered amplitudes A, the superanalog of the condition (2.11) takes
the form 5

: a 9 A _ (_1\k
exp m(/\kﬁ_)\,‘z + 1y, W)An =(—1)"A4,. (3.6)

Note that this local constraint looks similar to the (local) central charge condition in

four dimensions. Moreover, exp iw(Ai% + nﬁ%) is central for the osp(6]4) realization

given in the next Section 4.

Note that the above color structure (3.4) is very similar to the structure of quark-
antiquark scattering in QCD, see e.g. [28].

4 Singleton Realization of osp(6|4)

The osp(6]4) algebra is spanned by the sp(4) generators of translations 3%, Lorentz
transformations £%,, special conformal transformations RK,, and dilatations ®, by the
50(6) R-symmetries R4Z, R4p and R4p as well as 24 supercharges 2%, Q%, 6,4 and
S,a. Here we use sl(2) indices a,b,... = 1,2 and su(3) indices A, B,... = 1,2,3. As
mentioned above, the internal so(6) symmetry is not manifest in this realization of the
algebra. The generators R 5 and R are antisymmetric in their indices, while R4 5
does contain a non-vanishing trace and thus generates su(3) 4+ u(1). Hence, in total we
have 15 independent R-symmetry generators corresponding to s0(6) ~ su(4), cf. also
Figure 1.

Commutators. The generators of 0sp(6|4) obey the following commutation relations:
Lorentz and internal rotations read

[£%, 3 = +6;3° — 5053°, (€%, Je] = =023 + 5053 » (4.1)



[mABasc] = +6g3A7 [%ABﬂjc] - _53’337 (42)

[Rap. 39 = 0534 — 0535 (R4, 3] = 063" - 6e3” (4.3)
Commutators including translations and special conformal transformations take the form
[Rap, P] = 071L°, + 658%, + 6285, + 6°L%, + 26065 + 26569 | (4.4)
P, &2 =~ — s, (R, Q) = 581 + 5567, (45)
(B, Sea] = —00Q% — 6094, [Rap, Q4] = 00644 + 0;60a,  (4.6)

while the supercharges commute into translations and rotations:
{QaAv QIJ)B’} = 5§§Baba {GaA’ 6bB} = 5§§ab7 (4'7)
{Q% &y} = LY — R + 6500D {Q" &P} = —oimAP | (4.8)
{04,681 =652 + 6iRE 4 + 540iD {Q4%, G} = —6!Rus. (4.9)

Furthermore the non-vanishing dilatation weights are given by

[©>mab] - +q3ab’ [979&14] = +%QQA7 [9793] = +% ?4? (410)
D, Rar] = —Ras [©,6]] =-167, [D,64] = 364 (4.11)

All other commutators vanish. Note that in contrast to the psu(2,2[4) symmetry algebra
of N =4 SYM theory, all fermionic generators are connected by commutation relations
with bosonic generators.

Singleton Realization. The above algebra 0sp(6]|4) can be realized in terms of the
bosonic and fermionic spinor variables A* and n* introduced in Sections 2,3. Acting on
one-particle states the representation takes the form (cf. also [29], used in the present
context in [7,30]):
L% = N0y — 505X, PP = AN,
D = %/\aaa_’_%’ ﬁab:aaab7
R =y, R =00 — 505, Rap =040k,

QaA — )\anA7 Gf — ,r]AaOH
@ = \0y,  Gus=0ua. (4.12)

For a general discussion of representations of this type, cf. Appendix A. The multi-
particle generalization of these generators at tree-level is given by a sum over single-
particle generators (4.12) acting on each individual particle k, i.e.

3g1ulti _ Zszif}cgle’ Jo € 05p(6|4) (413)
k=1

As opposed to psu(2,2[4), the symmetry algebra of N' = 4 SYM, the algebra osp(6|4)
cannot be enhanced by a central and/or a hyper-charge. Since in N' = 4 SYM theory
the hyper-charge of psu(2,2|4) measures the helicity, this can be considered the algebraic
manifestation of the lack of helicity in three dimensions. Still we can define some central
element like in (3.6).



5 Constraints on Symmetry Invariants

We are interested in the determination of tree-level scattering amplitudes of n particles in
N = 6 SCS theory. These should be functions of the superspace coordinates introduced
in Section 3 and be invariant under the symmetry algebra 0sp(6|4) of the N’ = 6 SCS
Lagrangian. In order to approach this problem, this section is concerned with the sym-
metry constraints imposed on generic functions of n bosonic and n fermionic variables \{
and 1, respectively. That is, we study the form of invariants I,,()\;, ;) under the above
representation of osp(6[4). It is demonstrated that requiring invariance under the sym-
metry reduces to finding s0(6) singlets plus solving a set of first-order partial differential
equations; the latter following from invariance under the superconformal generator &.
Invariance under all other generators will then be manifest in our construction.

Due to the color decomposition discussed in Section 3, scattering amplitudes are
expected to be invariant under two-site cyclic shifts. Since the generators given in the
previous section are invariant under arbitrary permutations of the particle sites, they do
not impose any cyclicity constraints. Those constraints as well as analyticity conditions
are important ingredients for the determination of amplitudes, but are not subject to
study in the following. Note that apart from assuming a specific realization of the
symmetry algebra, the investigations in this section are completely general. In Section 6,
we will specialize to four and six particles and give explicit solutions to the constraints.
The following discussion will be rather technical. For convenience, the main results are
summarized at the end of this section.

Invariance under sp(4). The subalgebra sp(4) of 0sp(6[4) is spanned by the genera-
tors of translations 3%°, Lorentz transformations £%, special conformal transformations
fa and dilatations . Invariance under the multiplication operator 3% = X2\’ con-
strains an invariant of sp(4) to be of the form

L(Ni,mi) = 53(P)G()‘ia77i)7 (5.1)

where P® = "  A\?A\Y is the overall momentum and G(\;,7;) some function to be
determined. The momentum delta function is Lorentz invariant on its own so that
G(Ai,m;) has to be invariant under £% as well. As §2(P) has weight —3 in P, dilatation
invariance furthermore requires that Y, M0y,G = (6 — n)G. We will not specify any
invariance condition for the conformal boost here, since invariance under Ky, will follow
from invariance under the superconformal generators &,4, G2 using the algebra.

Invariance under £ and fPR. Invariance under the multiplicative supermomentum
9% requires the invariant I, to be proportional to a corresponding supermomentum
delta function:

where one way to define the delta function is given by
Q= T[ @ Q=> xnl (5.3)
e
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Again, the function F'()\;,n;) should be Lorentz invariant, and dilatation invariance im-
plies

> XiOwF = —n'F. (5.4)
k=1

Invariance under the second momentum supercharge Q% will follow from R-symmetry,
but will also be discussed in (5.19).

In order to construct a singlet under the multiplicative R-symmetry generator 42 =
S ninP one might want to add another delta function “5(R)” to our invariant.
Things, however, turn out to be not as straightforward as for the generators ¥ and
Q. As a function of the bosonic object ’4¥ made out of fermionic quantities, “6(R)” is
not well defined.

We first of all note that invariance under the u(1) R-symmetry generator
%CC = 77080 — %TL (55)
fixes the power m of GraBmann parameters 1 in the n-leg invariant 7,, to

m = 2n. (5.6)

Hence, increasing the number of legs of the invariant by 2 increases the Graffimann
degree of the invariant by 3 (remember that amplitudes with an odd number of external
particles vanish). This is a crucial difference to scattering amplitudes in N' = 4 SYM
theory. As a consequence, the complexity of amplitudes in N = 6 SCS automatically
increases with the number of legs. There are no simple MHV-type amplitudes for all
numbers of external particles as in the four-dimensional counterpart. Rather, the n-point
amplitude resembles the N®~/2MHV amplitude in N' = 4 SYM theory (being the most
complicated).

We can ask ourselves what happens to the R-symmetry generators in the presence
of 63(P)é%(Q). To approach this problem, we introduce a new basis for the fermionic
parameters 7;*:

nt, i=1,....n — a?,ﬂf,QaA,Y“A, le,...,"T*‘l. (5.7)
That is we trade n anticommuting parameters n for n = 2 x (n —4)/2+4 new fermionic
variables. The new quantities are defined as

of =aj ot = alnl, B =ay ot =Y agmd, (5.8)
i=1 i=1
yoerim gyt ot =3y, (5.9)
=1

where the coordinate vectors x7;(\;,) and y#(\;) express the new variables oy, 87 and Y
in terms of the old variables n;. At first sight, introducing this new set of variables might
seem unnatural. It will, however, be very convenient for treating invariants of osp(6/4)
and appears to be a natural basis for scattering amplitudes in N = 6 SCS theory.

11



In order for the new set of GraBmann variables (5.7) to provide n independent pa-
rameters, the coordinates have to satisfy some independence conditions. Since the two
variables () are given by the coordinate n-vectors A\{ for a = 1,2, a natural choice are
the orthogonality conditions

-\ =0, yh A0 =, y* x5 =0, (5.10)

where the dot - represents the contraction of two n-vectors as in (5.8,5.9). For convenience
we furthermore choose the following normalizations

af - at =0, xf x5 =0y, Y-yt =0. (5.11)

Given A? such that A\* - A’ = 0, (5.10) and (5.11) do not fix 27 and y® uniquely. The
leftover freedom can be split into an irrelevant part and a relevant one. The irrelevant
freedom is

TT, = a7, + v A, Yyt =yt +wA?, (5.12)

where v¥; and w are functions of A\. The freedom expressed in (5.12) is nothing but the

freedom of shifting the fermionic variables defined in (5.8,5.9) by terms proportional to

Q8. In the presence of §%(Q) this freedom is obviously irrelevant. The relevant freedom

corresponds to A-dependent O(n — 4) rotations of xf, see Appendix B for more details.
We can now explicitly express 7; in terms of the new parameters,

(n—1)/2 (n—4)/2
= > ma+ > wiaby — eyt QM + e iy, (5.13)
M=1 M=1

Since for general momentum spinors A obeying overall momentum conservation the two

operators
(n—4)/2

Z xJ Ty B;j = 6ab)\?iy?), (5.14)

define projectors on the z* and A\-y subspace, respectively, the statement that the new
variables span the whole space of GraBmann parameters can be rephrased as

(n—4)/2
- a,b
0= D i+ Ea Nyl (5.15)
J=1
Here (..) denotes symmetrization in the indices, whereas [..] will be used for antisym-

metrization in the following. Equation (5.15), however, only represents the coordinate
version of rewriting the multiplicative R-symmetry generator in terms of the new pa-
rameters:

n—4)/2
S (P)RAP = §3(P Z”h n? ( Z altg? +5abQ“[AY“B]>. (5.16)

12



Introducing the new set of variables {«, 5, @, Y} was originally motivated by this rewrit-
ing. In particular, we now find that the R-symmetry generators further simplify under
the supermomentum delta function

(n—4)/2

53 (P)6%(Q) M8 = 5%(P Z ot (5.17)

In order to investigate the properties of the unknown function F' in (5.2)

Li(Ais o, B,Y, Q) = 6*(P)3°(Q) F (N, . B,Y, Q) (5.18)

in terms of the new fermionic variables, we act with Q% on the invariant and use the
properties of *, y* and A\* under the momentum delta function to obtain

u aw OF
oI, = —0*(P)§°(Q)e bW' (5.19)
Since ¢ invariance forces this to vanish, the Y-dependence of F' is constrained to
8F
— ~ Q. (5.20)

All terms of F' proportional to @ vanish in (5.18) such that under §°(Q) we find
F=F(\,apB). (5.21)

This guarantees invariance under Q%. Hence, introducing the new set of fermionic vari-
ables and making use of Q%4 and Q¢ invariance, we fixed the dependence of the invariant
on 12 of the Grafimann variables. Rewriting the R-symmetries in terms of the new vari-
ables we obtain the conditions

(n—4)/2 '
RAPL, = 5%(P Z o B F (N 0, 8) = 0,
ey 5 8

Rapl, =0 (P)(Q) Y F(\i, a, B) = 0. (5.22)

A Ao B
J=1 (9@5 aﬁj}

Note that since «, § are independent of (), these equations equivalently have to hold
in the absence of the supermomentum delta function. Solutions to these equations for
n = 6 will be given in Section 6. Invariance under

p

Ry =3 ( ) 5B + B —= aﬁJ 5;‘) (5.23)

J=1

follows from (5.22) using the algebra relations (4.3). For more details on the solutions
to these equations, see Appendix B (cf. also [29]).

The analysis up to here concerns only the super-Poincaré and R-symmetry part of
0sp(6]4). Since this part of the symmetry is believed to not receive quantum corrections,
the considerations up to now are valid at the full quantum level.
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Invariance under &. In this paragraph we consider the implications of S-invariance
on the function I,,. This is the most involved part of the invariance conditions in this
section and will imply invariance under the conformal boost K., by means of the algebra
relation {G,4,88} = 0§/, We apply the generator &2 to the invariant I, after
imposing invariance under 3, £, ®, Q and R as above:

05°(Q)

Gf[n()V Oé,ﬁ, Q) = 63(P) |: aQaB

RAB [ | 56(Q)6§F] . (5.24)

Expressing the R-symmetry generator in terms of the parameters a and (8

6 (n—4)/2 6
A1, = 5%(P) a; Q(fg) S o8l F e, YcBFQbAla(SQ(g)Mf)'(Q)GfF . (5.25)
J=1

the first term vanishes by means of (5.22). Using Q*195%(Q)/0QF = §2540°(Q), we can
rewrite this as

S, = 8 (P)5%(Q) (2e.Y ! + &) F, (5.26)

and express the second term in this sum in the form of

A
F =
SiF =2, Z i\ Gxe ol o 997

jk=1 J=

n (n— 4/2 a _A'_A a -
( J?J] 3 4 $J] a >F+77A'Fa- (527)

Here we have defined the partial derivative of F' as

OF(\, o, B)

Fai =
oxe

(5.28)

a,S=const

If we now expand 7; in (5.27) in terms of the new fermionic basis (5.13) and use the
conditions (5.10,5.11), the first term in (5.26) cancels and the invariance condition for
the S-symmetry takes the form of a differential equation for the unknown function F:

(n—4)/2 ( (n—4)/2
__ 0

&L, =5 (P)(Q) Y { > [(aﬁZMNTJa—ﬁMZ&J?wa) O‘J%W (5.29)
J—=1 M.N=1 J

_ 0 _
+ (B Zyinga + aMZMNJa)O‘Ngﬁ }F + (xJ 'Fa) af 4+ {(a, +) < (B, —)}}
J
Here we have defined for convenience
i oxs,;
7= 3 g (530

Once the differential equation (5.29) is satisfied, invariance under &,4 follows from the
commutation relations of 0sp(6|4). While this equation is trivially satisfied for n = 4,
we will give explicit solutions to it for n = 6 in Section 6.
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Summary. To summarize the previous analysis, a general n-point invariant [,, of the
superalgebra can be expanded in a basis of R-symmetry invariants F}, ;,°

L, = 6*(P)6%(Q) Y far(N) Fu, (5.31)
k=1

where a priori some f, x(A) could be zero. The number K of basis elements F), x is given
by the number of singlets in the representation (4 @ 4)®"=%, cf. Appendix B. We have
introduced a new basis {ay, fr,Y,Q} for the fermionic superspace coordinates. Using
invariance under Q% and Q9 these are very helpful to fix the dependence of the invariant
on 12 of the GraBmann variables: The basis elements F,,; are functions only of the
n—4 Grafimann spinors af', 84, .. ., aél_4)/2, 5&—4)/? multiplied by the supermomentum
delta-function §%(Q). They have to satisfy the invariance conditions (5.22). In particular
this implies, via the u(1) R-charge (5.5), that they have to be homogeneous polynomials
of degree 3(n — 4)/2 in the {ay, §;} variables. This is very different than in NV = 4
SYM, where the n-point amplitude is inhomogeneous in the fermionic variables, and
the coefficients of the lowest and highest powers (MHV amplitudes) have the simplest
form. Here, the n-point amplitude rather resembles the most complicated (N"=4/2MHV)
part of the N' = 4 SYM amplitude. When expanding a general invariant in the basis
{F.k}, the momentum-dependent coefficients must be Lorentz-invariant and are further
constrained by the S-invariance equation (5.29). The analysis of that equation for general
n is beyond the scope of the present paper. One would have to analyze whether and
how the basic R-symmetry invariants F), ; mix under (5.29). Moreover, the invariants
F, i transform into each other under a change in the choice of {ay, 8r} (for more details
see Appendix B). One nice thing of (5.29) is that it expands into a set of purely bosonic
first-order differential equations.

6 Amplitudes for Four and Six Points

After the general analysis of 0sp(6]4) n-point invariants in Section 5, the simplest cases
n =4 and n = 6 are discussed in this section.

Four-Point Amplitude. After imposing (super)momentum conservation via the fac-
tor 0*(P) 0°(Q), invariance under the u(1) R-charge (5.5) already requires the four-point
superamplitude to be of the form

Ay =0°(P)3%(@Q) f(N), (6.1)

where f(\) is a Lorentz-invariant function of the Ay with weight —4. A4, then trivially
satisfies the R- and S-invariance conditions (5.22,5.29) and as a consequence is 0sp(6]4)
invariant. A field-theory computation [20] shows that indeed the superamplitude is given

6More precisely, the quantities F, ;. have to be multiplied by §°(Q) in order to be actual R-symmetry
invariants. In a slight abuse of notation, we refer to the F}, ; themselves as R-symmetry invariants.
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by’

0°(P)0%(Q) _ 6°(P)d°(Q)
(12)(41) — —(23)(34)

where we neglect an overall constant. For later reference, we state the component am-

plitudes for four fermions and for four scalars:

§3(P)(24)3
(12)(23) ’

Ay =

(6.2)

53 (P)(13)?
(12)(23)
(6.3)

A4w = A4(¢47 2174» ¢47 1/]4) = A4¢ = A4(¢47 ¢47 ¢47 ¢4) =

Six-Point Invariants. In the case of six points, there is only one pair of fermionic
variables «, 5. The space of R-symmetry invariants in these variables is spanned by the
two elements (cf. Appendix B)

8 (@) = %é?ABCOéAOéBOéC =ala’a®, () = %é?ABCﬁAﬁBﬁC = plp*6°. (6.4)
Thus the most general six-point function that is 0sp(6]4) invariant is given by

Is = 0*(P)*(Q)(f*(N) 6°(e) + f~ (1) 6°(8)) , (6.5)

where o = 27+, 8 = 27 -1 and 27 satisfy (5.10,5.11). In order to be Lorentz-invariant,
the functions f*(\) must only depend on the spinor brackets (2.7). For being invariant
under the dilatation generator (5.4), they furthermore must have weight —6 in the A’s.
Finally, they have to be chosen such that invariance under &2 is satisfied. As there is
only one pair of ¥ in the case of six particles, many of the quantities ZF** defined in
(5. 30) vamsh Namely, 0 = Z** = Z-** as can be seen by acting with z* - 9/9\* on
0 =% - 2% (5.11). The &4 invariance equatlon (5.29) thus reduces to

0
&t = #P) Q) (- Gz~ 320 1) F P @+ {la) @ (5)}) . (69)
Invariance under &7 is therefore equivalent to

: 1 9f* L Oxf
:;zﬂf—ima —32 v axa)‘ (6.7)

For given ¥, this eliminates one functional degree of freedom of f*, which generically
depends on 2n — 6|,—¢ = 6 kinematical invariants (cf. Section 2).

"The two expressions are equal due to the identity 0 = §3(P)(2|P|4) = 6%(P)((21)(14) + (23)(34)).
Note that we could also write Ay = isgn((12)(14))53(P) §%(Q)/+/(12)(23)(34)(41), which seems more
natural comparing to MHV amplitudes in A/ = 4 SYM theory. Then, however, one has to deal with the
sign factor such that we decided not to use this square root form of the four-point amplitude.
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Six-Point Amplitude. [t appears very hard to find a solution to (6.7) directly. More-
over, a solution would not fix the relative constant between the two terms of (6.5). In
order to obtain the six-point superamplitude, one thus has to calculate at least one
component amplitude from Feynman diagrams. With two component amplitudes, the
invariant (6.5) can be fixed uniquely, without having to solve (6.7).> The latter can
then be used as a cross-check on the result. It is reasonable to compute the ampli-
tudes Agy = Ag(a, W, by, P4, 0y, ) and Agy = Ag(0?, du, ¢, du, ¢, ¢4), as these have
relatively few contributing diagrams.

To obtain the component amplitudes Ag, and Ag, from the superamplitude Ag, one
has to extract the coefficients of n¥nin2 and n3ning, respectively, in the expansion of
(6.5). The GraBmann quantities n;* appear in expressions of the form

8° (1) = 6°%(Q)8%(a), (6.8)
where we introduce t§ = (A, z;7) (so a = 1,2,3). The n}nn} term in (6.8) is proportional
to

3

o2 3 AA2 g\
det |t} ¢ 3| =det [ A} AJ :((z‘j>x;+<jk>xj+<ki>xj)3. (6.9)
ty 2t AN Ao

In this way one can extract from (6.5) rather simple expressions for the component
amplitudes in terms of f*, x*:

Agy = ((13)xF + (35)af + (51)a)’ 1+ + ((13)x5 + (35)xy + (51)az)°f,
Ao = ((24)af + (46)aF + (62)a7)" F* + ((24)a5 + (46)a5 + (62)a7)°f . (6.10)

As shown explicitly in Appendix C, the equations (6.10) indeed determine f* and can
be rewritten as

Asy b o1
=zf"+2f7,
((p1 + p3 +p5)2)3/2
A
5 764 e A (6.11)

((p1 + p3s +p5)?)

where s is an undetermined sign and both s and z are functions of A\. The functions s, z
parametrize the relevant O(2) freedom in the choice of * mentioned below (5.12) and
discussed in Appendix B. z can obviously be reabsorbed in the definition of f*, the sign
s corresponds to the interchange of f* with f~.

Using the explicit form of Ag, and Ag, obtained from a Feynman diagram com-
putation in Appendix D, the equations (6.10) determine f*()\) and thereby the whole
six-point superamplitude:

As = 8*(P) &°(Q) (S (V) 8°(a) + f~ (M) 6°(B)) - (6.12)

8This was noted already in [20].
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We do not state f£(\) here, as their form is not very illuminating. Note that an explicit
six-point solution of (5.10,5.11) for z* is given by

1 (k) .
= €ij , 1,7,k odd,
P2V T I8) 1 (35)2 + (51)2 g
+i ik
R Uk) i,k even. (6.13)

YT R A 1 (46)2 1 (622

That the resulting superamplitude indeed satisfies the invariance condition (6.7) can be
seen by symbolically evaluating the latter and plugging random numerical momentum-
spinors A on the support of 6(P) into the result. In fact, as can be seen already in (6.6),
invariance implies that the two terms

F(P)Q) fF(N) (), P (P)&(Q)f(N) 6 (B) (6.14)
are separately S-invariant.
Factorization and Collinear Limits. There is a general factorization property (see

e.g. [31]) that any color-ordered tree-level scattering amplitude has to satisfy as an in-
termediate momentum P, = p; + - - - + py goes on-shell:”

A(lym) ST @B

int. part. p

A (1, Ry N Ay (0N k+1, ... n). (6.15)

Here A, = A,03%(P) and A® is defined by the equation A*A’ = P while F, denotes the
fermion number of particle p. The freedom in the choice of the sign of A is compensated
by the term (&1)*». We sum over all internal particles such that the amplitudes on
the right hand side of (6.15) are non-vanishing. Finally, the power 2 of 1/Pj; in (6.15)
follows from dimensional analysis, keeping in mind that

[An]mass dim. = 3 — g (616)
The purpose of this paragraph is to consider (6.15) using the explicit expressions for the
component amplitudes Ayy, Agy (6.3) and Agy, Agy (6.10) and check for consistency. In
particular, since in the theory under study only amplitudes with an even number of legs
are non-vanishing, A,, should be finite in the factorization limit of an even number of
legs, i.e. have no pole in PPy,

In the case of the four-point amplitude there is not much to be checked since P% — 0
implies (even in complex kinematics) that all kinematical invariants vanish, (jk) ~ (12),
ie.

Ay~ (12) for (12) — 0. (6.17)

For the six-point amplitudes there are two different limits to be considered:!°

9Since we are dealing with cyclically invariant amplitudes, there is no loss of generality in this choice
of momenta.
10For the two six-point amplitudes we computed (6.10), there is no sum over internal particles.
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Figure 2: Collinear (||) and factorization (P? — 0) limits of the six point
amplitude.

e k=23: (p1+p2+p3)* — 0. In this case (6.15) reads:

~ 1 ~ -
AG — —2A4A4 + finite (618)
P13

o k=2: (p1+p2)? =2p1p> — 0. In this case (6.15) reads:

3 1 - -
Ag — P_2A3A5 + finite = finite. (6.19)
12

The latter case is supposed to give a finite result since amplitudes with an odd number
of legs vanish. We checked that (6.18,6.19) are indeed satisfied for the amplitudes Ag,
and Agy given in (6.10).

The behavior in (6.19) deserves some further explanation. From the Feynman di-
agram computation, one naively expects the amplitude to diverge when some internal
gluon goes on-shell (after a choice of gauge the propagator is ~ 6“;—3”0).11 As an example,
let us consider a term corresponding to a three point vertex of two fermions and a gluon:

a
Ao

. )\a/\b 1% v 5
:: Ap ~ 1 2O-ab(p1 +p§) Eu ,0'
(p1 + p2)

rd
Ab o7

(6.20)

The two external fermions becoming collinear force the gluon to become on-shell. One
can check by direct substitution A\ = A{ + eu® that (6.20) is proportional to

Pk Emp
(p1- k)
where (0,)®k” = p®u®. Hence this term is finite in the two-particle collinear limit € — 0.

A similar mechanism makes contributions containing a gluon propagator with on-shell
momentum finite. This happens since there is no gluon on-shell state.

+0(e), (6.21)

"The on-shell gluon state is zero (asymptotic=linearized equations of motion are F, w =0= F )
When we say on-shell here, we just mean that the associated momentum in the Feynman diagram
squares to zero.
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What are the implications of the pole structure of Agy, Ag, on the functions f=(\)?
First note that (6.3)

24
A4w<)\1, ce ,)\4) = %AMO‘M e )\4) = :i:A4¢<)\1, ce ,)\4) s (622)

because p; + ps = —ps — py and thus (13)? = (24)2, therefore the sign depends on \y.
This implies that in the three-particle factorization limit

Resp%%zoflw = j:Resp%%:Oflﬁd) . (6.23)

Comparing this to (6.11) shows that either f™(X) or f~(A) does not contribute to the
factorization limit. Note that this is consistent with Appendix E, where the superanalog
of (6.15) is worked out. In the three-particle factorization limit, only one of the basic
R-symmetry invariants 63(«), §2(3) survives.

To finish this section, we comment on the limit of three momenta becoming collinear.
This kinematical configuration is nothing but the intersection of the two limits considered
above. If we first take the sum of three momenta to be on-shell and further restrict to
the configuration where these three momenta become collinear we obtain

. P20 Ag(1,2,3, M)A, 4,5,6) 123 (12)

Ag(1,2,3,4,5,6) 2 1 23+ (132 <12>2214(4, 5,6,)), (6.24)

where P% = (12)2+(23)?+ (13)2. Hence, the (12)72 divergence in (6.18) becomes (12)~!
because A4(1,2,3, 5\) goes to zero as in (6.17). On the other hand we could start from
the two-particle collinear limit (6.19) and see that the finite part on the right hand side
diverges as (12)7! if the third particle becomes collinear to the (already collinear) first
two particles (cf. Figure 2).

Note in particular the difference to N/ = 4 SYM theory, where the two-particle
factorization limit already results in a pole proportional to a non-vanishing lower-point
scattering amplitude. Furthermore the two-particle factorization and the two-particle
collinear limit are equivalent as opposed to the limits for three particles relevant for

N = 6 SCS theory.

7 Integrability alias Yangian Invariance

In this section, we show that the four- and six-point scattering amplitudes of NV = 6
SCS theory given above are invariant under a Yangian symmetry. In the following,
we will refer to the local Lie algebra representation of osp(6|4) given in Section 4 as
the level-zero symmetry with generators 3&0), e.g. P — PO, Based on this level-zero
symmetry, we will construct a level-one symmetry with generators 3&1) using a method
due to Drinfel’d [22]: We bilocally compose two level-zero generators forming a level-one
generator and neglect possible additional local contributions. This results in the bilocal
structure of the level-one generators that also appear in the context of N' = 4 SYM
theory, see e.g. [32,23]. Up to additional constraints in form of the Serre relations, the
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closure of level-zero and level-one generators then forms the Yangian algebra. Note in
particular that, while the dual superconformal symmetry in N' = 4 SYM theory was very
helpful for identifying the Yangian symmetry on scattering amplitudes [16], it is not a
necessary ingredient for constructing a Yangian.

To be precise, a Yanglan superalgebra is given by a set of level-zero and level-one

generators \jg) and J B) obeying the (graded) commutation relations

B30 = fag™30 W3 = fap™3Y, (7.1)
as well as the Serre relations!?

~ ~ 1 ~ @ ~(1 ~ « ~ ~ ~(0
[‘J(l) [Jé "j }}+( )\ |(\/3|+|7|)[‘jg) [ M 3 }}+( )MI \Hﬁl)[‘jg),[‘j((ll)’ é)}}
= ﬂ (_1)‘P||l‘|+‘ HV'{\’)\adyaﬁy]prAfﬁo' nypUT‘ (72)

Here, h is a convention dependent constant corresponding to the quantum deformation
(in the sense of quantum groups) of the level-zero algebra. The symbol || denotes the
GraBimann degree of the generator J, and {.,.,.] represents the graded totally sym-
metric product of three generators. Given invariance under 3,(10) and 3&1), successive
commutation of the level-zero and level-one generators then implies an infinite set of
generators.

In the case at hand the level-zero generators 324) can be identified with the stan-
dard osp(6]4) generators defined in Section 4, where indices «, 3, ... label the different

generators. We define the level-one generators by the bilocal composition

W=7 > 39 (7.3)

1<j<i<n

The definition (7.3) implies that the level-one generators transform in the adjoint of the
level-zero symmetry (7.1). Note that in contrast to the local level-zero symmetry, these
bilocal generators incorporate a notion of ordered sites. Also note that (7.3) singles out
two “boundary legs” (1 and n in this case), while in the amplitudes 4, all legs are on
an equal footing. It was demonstrated in [16] that for osp(2k + 2|2k) this definition of
the Yangian is still compatible with the cyclicity of the scattering amplitudes. That is
to say, [3(011), U] vanishes on the amplitudes 4,,, where U is the site-shift operator.

In explicitly determining the Yangian for osp(6|4), we follow the lines of [16], where
similar computations were performed for psu(2,2|4). To evaluate (7.3), we require the
structure constants f,37 of 0sp(6|4) that can be easily read off from the commutation
relations in Section 4. In order to raise or lower their indices we also need the metric
associated with the algebra whose explicit form is given in Appendix F. That the Yangian
indeed satisfies the Serre relations (7.2) is shown further below.

We want to show Yangian invariance of the four- and six-point scattering amplitudes.
In order to do so, we need to compute only one level-one generator 39) by means of (7.3).
All other level-one generators can be obtained by commutation with level-zero generators

12Note that there is a second set of Serre relations that for finite-dimensional semi-simple Lie algebras
follows from (7.2), see [33].
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of the osp(6]4) algebra (7.1). Hence invariance under all other level-one generators
follows from the algebra provided we have shown invariance under the level-zero algebra
as well as under one level-one generator. The former was done above, the latter will be
demonstrated here. We will therefore only compute the simplest generator M and
show invariance of the scattering amplitudes under this generator. As demonstrated
more explicitly in Appendix G, the level-one generator reads

R0 — 1 Z (ngm(aA ng)wA _ @Zgoxacmgo)cb) (o j)> , (7.4)
i<t

after we have changed the basis of generators for convenience by combining the dilatation
and Lorentz generator into
POy = ¢y 4 51D, (7.5)

Yangian Invariance of the Four-Point Amplitude. We now check that the four-
point scattering amplitude introduced in Section 6

P(P)8Q) 8 (P)(Q)
(12)(41) (23)(34)

Ay =0 (P)(Q)f(N) = (7.6)

is annihilated by the Yangian level-one generator ) given in (7.4). To this end we
make use of

0u5Q) = ' 5 9u0(@) = X )

98(P)
5(P) = 2\
0,,0(P) = 2\ S50

2 apsb )

(7.7)

such that plugging in the explicit form of the generators straightforwardly yields the
action of M) on Ay in the following form

q3(1)abA4 _ %Z<QEO)(aRQ§O)b)R - @EO)(armgmb)r i o j)>A4

J<u

= 15(P)3(Q) Z(—fpﬁ.o)"(b(smssu?aﬁ +159) F(N) — (i j)). (7.8)

j<i

Using the different expressions in (7.6) we can rewrite f(\) in the form of

1 1 1
T =3 (<12><41> - <23><34>) (7:9)

which yields the following derivative with respect to one of the spinors:

B f(\) = sst% ( <Z.7Ajjl> -G A_ll i>> FON. (7.10)

Now we make use of certain properties of the function f(A). First of all defining the
quantity
U = e\, f(N), (7.11)
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we find that for all j, the symmetric part U%. = U" satisfies (here n = 4)

sym, i
n (ays) (ays)
L[ XA An A
> U= 5 ( . ”11 — "*i > : (7.12)
where we have used momentum conservation P* = 0. This implies that UZ5, ; does not
contribute to (7.8),
> e U =o0. (7.13)
j<i
Hence, in (7.8) only the antisymmetric piece Uy, ; = Ui[as] survives and can be shown
to take the form
Usgym,i = € F(A). (7.14)

Thus the four-point scattering amplitude is invariant under the action of the level-one
generator Heb:

FH?PA = 5(P)5(Q) Z(fpg.(’)’“(”(%ag) — 36 fF ) — (i & j)) =0. (7.15)

j<i

As indicated above, invariance of A4, under all other level-one generators follows from
the algebra and hence the four-point scattering amplitude is Yangian invariant.

An n-point Invariant of P™. Note that the proof of PM-invariance of the four-
point scattering amplitude is based on the property (7.10) of the function f(\). Hence
we can build an n-point invariant of the level-one generator BM):

B, = 8*(P)3*(Q)f (). (7.16)

where the only constraint on f(\) is given by (7.10). In particular, this holds for the

choice
1

A) = : 7.17

) V{(12)(23) ... (nl) (7.17)

The Graimann degree of B,,, however, is too low for being invariant under the level-zero
u(1) R-symmetry (5.6), and thus B, cannot be an invariant of the whole Yangian.

Yangian Invariance of the Six-Point Amplitude. The six-point superamplitude
was introduced in (6.5)

As = 0*(P) 8°(Q)(f*(N) 8°(e) + f~(N) 6°(B)) , (7.18)

with f*()\) as defined in (6.10). We will show that in fact each part of this scattering
amplitude

A =3 (P) 8 (Q)UfT (V)8 (@),  Ag =8 (P)5°(Q)f (V) 6°(B), (7.19)

is separately invariant under Yangian symmetry. Demonstrating this for Ag, invariance
of Ag follows by interchanging +, — and «, § in the following calculation.
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In the above paragraph we have seen that
1
BB = P (P) 6°(Q) = 0. (7.20)
V/(12)(23) ... (61)

Since PO is a first order differential operator up to constant terms, we can factor out the
invariant Bg in the invariance equation for the six-point amplitude in order to simplify
the calculation

POCAL = BPOCFT (V) 6% () + F(X) 0% () POBs. (7.21)
Here, of course, the second term vanishes. We have defined

FrO) =/(12)(23) ... (61) fH(N), (7.22)

and have to drop constant terms in (! since they are used up for the invariance of Bg:

q}(l)ab _ m(l)ab}

(7.23)

constants dropped *

Now we rewrite (7.21) as

BBt f+(X) 5%(a) = LBg Z(AE“A? (nfosr — N0y) — (i j))f+63(a)- (7.24)

j<i

After expanding 7; in terms of «, 8, @ and Y (5.13) and using

6
_l’_

P

k=1

which follows from (5.10), this yields a differential equation for the function f*(\) in
(7.18)

oxy;
_ 2
e (7.25)

)

+
Ox;

ON!

POCAS = 585 ) [AE“AS’-’ (30727 =8N S = N log ) — (i & j)] Jro*(a) = 0.
j<i

(7.26)
We have evaluated this equation symbolically using explicit solutions of (5.10,5.11) for
the coordinates x* as well as the explicit form of f* given in (6.10). Plugging in specific
numerical momentum configurations then shows that (7.26) is indeed satisfied. Hence,
both summands of the six-point scattering amplitude A{ and A are independently
invariant under the level-one generator 8! and thereby, as argued above, under the
whole Yangian algebra. Note in particular that both AF as well as (7.26) are independent

of the choice of coordinates z*.

The Serre Relations. In this paragraph we show that the Serre relations are indeed
satisfied for the Yangian generators defined above. We do not try to prove the relations
by brute force but first analyze their actual content, cf. also [22,33,34]. This leads to
helpful insights simplifying the application to the case at hand.
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The Yangian algebra Y (g) of some finite dimensional semi-simple Lie algebra g (here

osp(6]4)) is an associative Hopf algebra generated by the elements T and JY trans-
forming in the adjoint representation of J©,

T T = fes T, T, T = fos™ T (727)

In all other parts of this paper we do not distinguish between the abstract algebra
elements J and their representation J. For the purposes of this paragraph, however, it
seems reasonable to make this distinction. Making contact to the paragraphs above, we
note that defining a representation p of the Yangian algebra Y (g), we have

p:Y(g) = End(V),  p(J9) =37, p(gV) =3 (7.28)

The level-zero and level-one generators are promoted to tensor product operators of
Y (g) ® Y(g) by means of the Hopf algebra coproduct defined by

AT =0 e1+10T0, (7.29)

AT =TV e1+10I70 + gfaﬂ’*JB‘O) ® JO. (7.30)

For consistency of the Yangian, the coproduct has to be an algebra homomorphism, i.e.
A([X, V) = [A(X), AD))] (7.31)

for any X, Y in Y (g). This equation trivially holds for X', ) being T . J ﬁ(o) and for X,
Y being ja(o), jél). The case

AT, T = 1agD, a7V, (7.32)

however, is not automatically satisfied and will lead to the Serre relations. We will now
derive a rather simple criterion for (7.32) to be satisfied by a specific representation. In
particular, this criterion will be satisfied by the Yangian representation of osp(6|4) given
above.

First of all note that both sides of (7.32) are contained in the asymmetric part of the
tensor product of the adjoint representation with itself. We decompose this as'

(Adj ® Adj)™™ = Adj & X, (7.33)

which defines the representation X (not containing the adjoint). The adjoint component
of (7.32) defines the coproduct for the level-two Yangian generators. The Serre relations
imply the vanishing of the X component of the equation. For seeing this, one can expand
the right hand side of (7.32) using (7.30), and project out the adjoint component. As
shown explicitly in Appendix H, this yields an equation of the form

0= A(Kapy) — Kapy ® 1 — 1@ Ko, (7.34)

13This is a standard property of all finite-dimensional semi-simple Lie algebras.
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The Serre relations then are nothing but K.z, = 0, or more explicitly

(T3 TN + (77 (70, TN + 1701780, 73

h2
= o foP M 1 F T, T, T (7.35)
It is very important to note that only the X component of {7, 7, J} contributes to the
right hand side of these equations. This will be useful in the following.
It is standard knowledge (cf. also Appendix H) that one can construct a representation
of the Yangian algebra starting from certain representations of the following form:

p(T) =39, pg") =0, (7.36)

where J© is a representation of the level-zero part. The representations J(© for which
this construction is consistent are singled out by the Serre relations. In the language of
the present paper, p is nothing but (4.13,7.3) for one site, i.e. n = 1. For the represen-
tation (7.36), the Serre relations boil down to the vanishing of the right hand side of
(7.35). As we have seen that the Serre relations are the result of a projection onto the
representation X, this is equivalent to

~ ~ 0 ~
(39,3939}, = 0. (7.37)

By repeated application of the coproduct to the generators, the representation p is lifted
to another, non-trivial representation of the full Yangian algebra. The consistency of
the construction is ensured by the homomorphicity of the coproduct (7.32). The form
(4.13,7.3) for generic n follows from this construction.

In the following we explicitly show that (7.37) is satisfied for the singleton represen-
tation of osp(2k|2¢) relevant to this paper, cf. (4.12,A.14). Let us start with the case
m = 0 or n = 0. As demonstrated in Appendix A, the representation we are using is the
superanalog of the spinor representation of so(2k) and the metaplectic representation of
sp(20).1

Consider the decomposition (7.33) of the antisymmetric part of the tensor product
of two adjoint representations:

s50(2k) : (HeH)™ =H @ Hj

g—traceless

sp(20) (Mem)™ =m0 & HHg_ e (7.38)

where g and € are the relevant symmetric and symplectic form, respectively. Note that
the second contribution in these two cases corresponds to what was called X above.
As explained in detail in Appendix A, the generators of the spinor and metaplectic
representations acting on one site take the form

9 ~ [y, S~ {g, ¢, (7.39)

4The treatment generalizes to so(2k + 1).
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respectively, where

7y =97, (€', &7] = QY. (7.40)
This means that for any product of the generators (7.39) the symmetrized g-traceless
or antisymmetrized )-traceless part in two indices vanishes, respectively. Hence, in

particular the quantity {J,J,J} evaluated for (7.39) cannot contain the representation
X defined in equation (7.38). In full detail:

so(2k): {79 T T™} decomposes into E @ 2H

sp(20) : {84 S* SmmY  decomposes into TIITIT & 2013. (7.41)

Thus the right hand side of (7.35) vanishes for these two cases.
For the generalization to the super case 0sp(2k|2¢), notice that the two equations in
(7.38) are related to each other by flipping the tableaux. They generalize to

osp(2k[20):  (HeB)™™"=H e & , (7.42)

G —traceless

where in the tableaux for superalgebras, symmetrization and antisymmetrization are
graded. Symmetrization in the tableaux by convention is defined as (anti)symmetrization
in the (sp) so indices. Antisymmetrization is defined analogously. The form G is
composed of the metric g and the symplectic form €2, c¢f. Appendix A. The equations
(7.39,7.40) generalize to

(04,65} = g8 JA {04 6] . (7.43)

The right hand side of (7.35) generalizes to the graded totally symmetrized product of
three generators. It contains only the representations

osp(2k|20) : {3&0),320),3(70)] decomposes into E @ 2H, (7.44)

in particular it does not contain the representation X. This proves the Serre relations.

Note that only the last part of this proof used the explicit choice of the algebra and
form of the representation. Hence, adapting these last steps might help to prove the
Serre relations for different algebras and representations.

Note on the Determination of Amplitudes. As shown in Section 5, all n-point
0s5p(6]4) invariants are given by (5.31)

L, = 5*(P)8%(Q) Y (N Fu (7.45)
k=1

where §°(Q)F, x is a linear basis of R-symmetry invariants, that is F,, ; are homogeneous
polynomials of degree 3(n — 4)/2 of the Gramann variables oy, 8, . .., @4, Bn_4 such
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| J-symm. Relevant Irreducible rep. Ivariants T
invariants so(n —4) of so(n — 4) nvariants I,
: : X X F) v
o + FrNG(a)
6 s50(2) ~u(l - %
sg) | e e - F-(0(5)
FT 2% 1 TN FT
8 s0(4 = 2
) (4) 2% 6 S on (N Fig
gi 8 x 6
10 L 2] 2
Q[sz s0(6) 6 x 20 T
' 7

Table 2: Summary of the basic R-symmetry invariants and the freedom in the
definition of the fermionic variables oz, 55 (5.8). n is the number of legs. so(n—4)
is the relevant freedom (B.7). The Yangian invariants I, = 63(P)6%(Q) I,, are
also invariant under this so(n — 4) freedom. deg x R means that the so(n — 4)
representation R appears deg times among the R-symmetry invariants. The
index 7 labels this multiplicity, the indices 7,&,0 are so(n — 4) fundamental
indices.

that (5.22) is satisfied. As is explained in Appendix B, the number K of R-symmetry
invariants is given by the number of singlets in the representation (4 @ 4)®=%),

Assuming that invariance under the Yangian algebra not only holds for the 4- and
6-point amplitudes, but for all tree-level amplitudes, one can ask to what extent the
amplitudes are constrained by Yangian symmetry. Before addressing this question for
the general n-point case, let us summarize the cases n = 4 and n = 6. After imposing
Poincaré invariance, the K functions f,x(\) a priori depend on 2n — 6 kinematical
invariants, cf. Section 2. Further requiring dilatation invariance reduces this number to
2n — 7. Hence for four points, there remains only one functional degree of freedom. Since
there are no fermionic variables a, § in this case, S-invariance (5.29) is automatically
satisfied. Invariance under BV (7.4) imposes one first-order differential equation on f(\)
and thus completely constrains the four-point superamplitude up to an overall constant.
In the case of six points, f*(A\) and f~()\) (6.5) depend on 2n — 7 = 5 parameters. Both
S- and PM-invariance impose one differential equation on each f* and f~ (6.7,7.26)
without mixing the two functions. Thus after satisfying these equations, three of the
functional degrees of freedom of f* and f~ remain undetermined, and they constitute
two independent Yangian invariants.

For general number of points n, the S-invariance equation (5.29) expands to

K ,(n—4)/2
GAL, = 5*(P) 8%(Q) Z( Z (afz; +B72F) O furk(N) Fop+ fn,k(A)Ban,k) , (7.46)
k=1 J=1

where B(f is a first-order differential operator in the fermionic variables «ay, ;. Since
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the F),, are independent as functions of ay, 8y, also all elements of {aF}, 1, B4F, 1} are
independent (but some of them might vanish). Thus expanding (7.46) in the fermionic
variables yields at most n — 4 first-order differential equations for each of the functions
fnk(A). From the term ), E(‘;‘Fnk it might yield additional equations which only depend
on the coordinates x§ that define s, B;. Given that the xf only parametrize a change
of basis in the fermionic variables, assuming that there exists an invariant I, already
implies that these additional equations can be solved by some choice of xf Furthermore
requiring Yangian invariance, i.e. invariance under () (7.4), yields another first-order
differential equation for each function f, x(\):

K

UL, =8P 8(Q) Y ((éabfn,km)Fn,k + fn,ku)D“bFn,k) o (T47)

k=1

where C is a first-order differential operator in \;, while D ig a first-order differential
operator in oy, f;. Again, the term ), D“mek might yield additional equations which
are solved by some xjj, assuming existence of an invariant. In conclusion, there remain
at least (2n —7) — (n —4) — 1 = n — 4 functional degrees of freedom for each function

While for six-point functions, the two basic R-symmetry invariants do not mix under
the S- and PW-invariance equations, for higher number of points the mixing problem
is less trivial. Nevertheless, an analysis of the relevant freedom (B.7) suggests that the
mixing should take place (at most) among the s0(6)p singlets contained in the same
50(n — 4)elevant multiplet (see Table 2 and Appendix B for details). This point deserves
further investigations.

The above analysis shows that the invariant (7.45) and thus the n-point amplitude
cannot be uniquely determined by Yangian symmetry as constructed in Section 7. More-
over, Yangian invariance not only leaves constant coefficients but functional degrees of
freedom undetermined. As in the case of N'=4 SYM [17,18], in order to fully determine
the amplitudes, symmetry constraints have to be supplemented by further requirements.
First of all, the color-ordered superamplitude A, must be invariant under shifts of its
arguments by two sites. This is a strong requirement that has not been included in the
analysis above. Furthermore, one can require analyticity properties such as the behavior
of the amplitudes in collinear or more general multiparticle factorization limits.

8 Conclusions and Outlook

In this paper we have determined symmetry constraints on tree-level scattering ampli-
tudes in N' = 6 SCS theory. Supplemented by Feynman diagram calculations, explicit
solutions to these constraints, namely the four- and six-point superamplitudes of this
theory were given. Most notably we have shown that these scattering amplitudes are
invariant under a Yangian symmetry constructed from the level-zero osp(6]4) symmetry
of the theory.

In order to deal with supersymmetric scattering amplitudes, we have set up an on-
shell superspace formulation for N’ = 6 SCS theory. This formulation is similar to the
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one for N' =4 SYM theory, but contains two superfields corresponding to particles and
anti-particles. Furthermore one of the superfields is fermionic. The realization of the
osp(6]4) algebra on superspace was used to determine constraints on n-point invariants
under this symmetry. In the case at hand, introducing a new basis {ay, 8,Y, @} for the
fermionic superspace coordinates seems very helpful in order to find symmetry invariants.
In particular it simplifies the invariance conditions for amplitudes with few numbers
of points. We have demonstrated that the determination of symmetry invariants can
be reduced to finding s0(6) singlets plus solving a set of linear first-order differential
equations.

In four dimensions, helicity is a very helpful quantum number for classifying scattering
amplitudes according to their complexity (MHV, NMHV, etc.). In three dimensions,
however, the little group of massless particles does not allow for such a quantum number,
and thus a similar classification seems not possible. Furthermore, only the four-point
amplitude in A/ = 6 SCS theory is of similar simplicity as MHV amplitudes in N = 4
SYM theory. The six-point amplitude determined in this paper is already of higher degree
in the fermionic superspace coordinates than the four-point amplitude. Its complexity is
comparable with that of the six-point NMHV amplitude in N' = 4 SYM theory. Except
for the four-point case, there are no simple (MHV-type) scattering amplitudes, but the
amplitude’s complexity increases with the number of scattered particles. In terms of
complexity, the n-point amplitude in N = 6 SCS theory seems to be comparable to the
most complicated, i.e. N*=9/2MHV amplitude in N' =4 SYM theory.

We have checked that the six-point amplitudes consistently factorize into two four-
point amplitudes when the sum of three external momenta becomes on-shell. The two-
particle factorization limit on the other hand results in a product of scattering amplitudes
with an odd number of external legs which vanish in A/ = 6 SCS theory. This is an
important difference to N' = 4 SYM theory, where the two-particle collinear limit results
in non-vanishing lower point amplitudes. In particular, this was used to relate N' = 4
SYM scattering amplitudes with different numbers of external legs. Symmetry plus
the collinear behavior seem to completely fix all tree-level amplitudes in N/ = 4 SYM
theory [17,18]. Note that similar arguments for N' = 6 SCS theory would have to make
use of a three-particle factorization or collinear limit (which are not equivalent).

In [17], this relation of different N = 4 SYM scattering amplitudes in the collinear
limit was implemented into the representation of the psu(2,2]4) symmetry on the scat-
tering amplitudes. This implementation makes use of the so-called holomorphic anomaly
[24], which originates in the fact that four-dimensional massless momenta factorize into
complex conjugate spinors (psqg = A)). In three dimensions, on the other hand, massless
momenta are determined by a single real spinor (psq = A\) which does not allow for a
holomorphic anomaly. Hence, a straightforward generalization of the symmetry relation
between amplitudes in the collinear or factorization limit to A/ = 6 SCS theory is not
obvious. It lacks a source for a similar anomaly as in the four-dimensional case.

In N = 4 SYM theory, studying the duality between scattering amplitudes and
Wilson loops revealed a dual superconformal symmetry. The presence of this extra
symmetry then lead to the finding of Yangian symmetry of the scattering amplitudes.
Even more, the dual symmetry was identified with the level-one Yangian generators
[16]. Though in N/ = 6 SCS theory a similar extra symmetry is not known, there is a
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Figure 3: The symmetry generators of osp(6|4) (lhs) and psu(2,2|4) (rhs). In
psu(2,2|4) the generators can be arranged according to their hyper- and dilatation
charge. Similarly, we can arrange the generators of o0sp(6|4) if we replace the
hypercharge by a u(1) R-symmetry charge. In N' =4 SYM theory, the dual or
level-one Yangian generators () and Q) were identified with the generators
S© and RO, respectively. The picture on the left suggests a similar dualization
for ' = 6 SCS theory incorporating the R-symmetry.

straightforward way to construct level-one generators from the local osp(6]4) symmetry
yielding a Yangian algebra. We showed that the four- and six-point tree-level amplitudes
of N' = 6 SCS theory are indeed invariant under this Yangian algebra, and that the
Yangian generators obey the Serre relations, which ensures that the Yangian algebra is
consistent.

The fact that N’ = 6 SCS theory in the planar limit gains extra symmetries in the
form of integrability seems to be related to special properties of the underlying symmetry
algebra 0sp(6]4), namely the vanishing of the quadratic Casimir in the adjoint represen-
tation (see also [35]). It is interesting to notice that, while in the four-dimensional case
the algebra with this special property is the maximal superconformal algebra psu(2,2|4),
in three dimensions it is not the maximal superconformal algebra osp(8|4), but osp(6|4)
that has this special property.

Our findings point towards further investigations. Among others, one should consider
the AdS/CFT dual of N/ = 6 SCS theory, since in N'= 4 SYM theory the comparison
with results from AdSs x S° strings has been extremely useful. The dual superconformal
symmetry of scattering amplitudes in N = 4 SYM theory can be traced back to a T-self-
duality of the AdSs x S° background of the dual string theory [12,13]. Such a duality
seems not to be admitted by AdS,; x CP3, the string theory background corresponding
to N/ = 6 SCS theory [21]. Can this problem be reconsidered?

In their search for a T-dualization, the authors of [21] assume that the dualization
does not involve the CP? coordinates. On the other hand, the structure of the osp(6[4)
algebra seems to call for a T-dualization of 343 bosonic and 6 fermionic coordinates dual
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to the generators {‘,]3‘”’, RAB| DaA} (cf. Figure 3). The contributions to the dilaton shift
coming from bosonic and fermionic dualization seem to cancel out. However, this formal
T-duality is not compatible with the reality conditions of the coordinates; still it seems
worthwhile to investigate it further.'> The problem with T-dualizing the coordinates of
CP? appears to be connected to the lack of a definition of §(R) in our setup.

Other hints for rephrasing the Yangian symmetry in terms of some dual symmetry
could come form perturbative computations in N' = 6 SCS. In particular, the IR di-
vergences for scattering amplitudes could possibly be mapped to the UV divergences
of some other object (maybe a Wilson loop in higher dimensions). Any results in this
direction might also shed light on the duality between non-MHV amplitudes and Wilson
loops in N/ = 4 SYM theory, since the amplitudes in N = 6 SCS theory are very similar
to those.

There are many more open questions and directions for further study. They comprise
the extension of our results to higher point amplitudes, their extension to loop-level and
in particular the understanding of corresponding quantities in the AdS/CFT dual of
the three-dimensional gauge theory. One of the most interesting problems seems to be
whether one can find a systematic way to determine (tree-level) scattering amplitudes in
N = 6 SCS theory. An apparent ansatz would be an adaption of the BCFW recursion
relations [36] of N/ =4 SYM theory. This problem is currently under investigation.

Recently, a remarkable generating functional for A" = 4 SYM scattering amplitudes
was proposed [37]. The functional takes the form of a GraBmannian integral that repro-
duces different contributions to scattering amplitudes. These contributions have been
shown to be (cyclic by construction) Yangian invariants [38]. It would be interesting to
investigate whether an analogous formula exists for the three-dimensional case studied
in this paper. The (S)Clifford realization presented in Appendix A could play a similar
role for osp(2k + 2|2k) as the twistorial realizations plays in the case of psu(m|m).

Acknowledgments. We would like to thank Niklas Beisert, Tristan McLoughlin and
Matthias Staudacher for many helpful discussions, suggestions as well as comments on
the manuscript. In particular, we are grateful to Tristan McLoughlin for his initial
collaboration on this project. We further thank Lucy Gow, Jakob Palmkvist and Soo-
Jong Rey for discussions on various related topics.

A From (S)Clifford algebra to Spinor/Metaplectic
representations

In this appendix we want to stress that the singleton representation of osp(6|4) we
are using in this paper (see Section 4) is nothing but the natural generalization'® of
the familiar spinor representation of so(2k). Moreover we will emphasize some special

15The T-duality we are proposing is very similar to another formal T-duality noticed in section (3.1)
of [12]. In that case one T-dualizes the coordinates dual to {%“d,%rrl,ﬂar/,ﬁm}. Here, the indices
r,r’ correspond to the breaking su(4)r — su(2) x su(2). This version of the T-duality has not been used
so far.

16See also |39] for osp(N[4) and [40] for sp(2f).
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properties of this realization that makes the Yangian generators defined in Section 7
satisfy the Serre relations (7.2).

Let us first review the familiar so(2k) case. It is well-known that if one has a repre-
sentation of the Clifford algebra:

{7} =9", (A1)
for a given symmetric form ¢g¥, where 4,7 = 1,... 2k, then the objects
T9 ~ [, 9] , (A.2)
satisfy the so(2k) algebra commutation relations
(79, TH) ~ g*T" + ... (A.3)

where the dots mean: Add three more terms such that the symmetry properties of the
indices are the same as on the right hand side. The realization (A.2) still does not
look like the R-symmetry generators in (4.12). To obtain (4.12) from (A.2) one has to
choose an embedding of u(k) into so(2k) and define creation/annihilation type fermionic
variables 5

nt =AY oo = A (A.4)
n
where A =1,...k is a u(k) index and A;FA, Aj,; have to satisfy
AFAgIAg, = 0%, AFAgIATE =0, ALg? Ag; =0 (A.5)

in order that n4, a%, satisfy canonical anticommutation relations. More explicitly, the
R-symmetry generators in (4.12) are related to the ones in (A.2) via

R~ ATAATPTY Ry ~ AFAAG TV, Rap ~ Ay A, T7 . (A6)

The realization one obtains in this way is not irreducible, but splits into two irreducible
representations (with opposite chirality). Indeed, the full space of functions (necessarily
polynomials) of the variables n# splits into two spaces: one made of polynomials with
only even powers of n“, the other with only odd powers of n. None of the generators
in (4.12) connects the two.

This construction works in the very same way for sp(2¢), the main difference is that in
this case the representation one obtains is infinite-dimensional. This representation is the
direct analog of the spinor representation and is usually called metaplectic representation.
If one starts with a representation of the algebra:

€. ¢] =aY (A7)
for a given anti-symmetric (non-degenerate) form Q% then the objects

SY {0 (A.8)
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satisfy the sp(2¢) algebra commutation relations
[S’j, Skl} ~ QRS (A.9)

where again the dots mean: Add three more terms such that the symmetry properties
of the indices are the same as on the right hand side. As before, one has to choose an
embedding of u(¢) into sp(2¢) and define creation/annihilation type bosonic variables

0
O\

A= Beg, =B, , (A.10)

where a = 1,...k is a u({) index and B/, B, have to satisfy
BB, = o, BB =0, BB, = 0 (A1)

in order that \?, 6%@ satisfy canonical commutation relations. More explicitly, the bosonic

generators in (4.12) are related to the ones in (A.8) via
P~ BFBISY, Vi ~ BB,;S7, Rap ~ B, 8,57 . (A.12)

Let us stress that at the group level spinor and metaplectic representations are rep-
resentations of Spin(2k), Mt(2(), respectively, which are the double covers of SO(2k),
Sp(2¢).

All this easily generalizes to osp(2k|2() algebras. If one starts with objects satisfying

(04,68} =Gg4P | (A.13)
where A, B label the 2k + 2(-dimensional fundamental representation of osp(2k|2¢), then
JE ~ {4, 6], (A.14)

satisfy osp(2k|2¢) algebra commutation relations. After choosing an embedding of u(k|¢)
into 0sp(2k|2¢), one obtains oscillator type realizations, like the one in (4.12).

B s0(6) Invariants

In this appendix we will study the problem of determining invariants under the following
realization of s0(6):

p
R =3 "allp] (B.1)
J=1
R zp: 0 9 (B.2)
AB — 14 _ R .
= dalj 05]
r B B
0 = (aA_ -~ ) , B.3
B JZ:I J@a? 8@?6‘] ( )
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where af', 84 are anticommuting fermionic variables and A, B are SU(3) indices. p is
some integer, it is related to the number n of amplitude legs as 2p = n — 4. This
realization is completely equivalent to the following one:

Zm P, (B.4)

2p
d 0
mAB:Za 55,7 (B.5)
2p
0 0
A _ A A
"o =2 (o ) B0
=1 ¢

where p; are linearly related to o', 87, the map between p and a, 3 is parametrized by
a O(2p) freedom. Notice that this last realization makes sense also for odd 2p.

All the generators written above are invariant under O(2p) rotations among the family
indices. In the following we will refer to this group as dual. O(2p)gua rotations symmetry
is manifest in the form of the generators written in terms of p as a rotation of the indices
. On the generators written in terms of «, 5 O(2p)qua acts in this way

ar — Slay, gl — (”—1) B, Ul(p), p? d.of.
2
ar — oy + Q[]Jrﬂj , ﬁl — BI —+ QI_JCVJ , Sg((pf> R p(2p — 1) d.o.f.
O(2
Oé]—>,81,, BI_>0517 ZQNﬁa (B7)
where Q17 = —Q4!. The Z, is the conjugation of su(p) (outer automorphism). Notice

that we ralsed the family index of 3, we have to do this in order to interpret the family
index as a u(p) index.

In the following, we will show how the s0(6) invariants can be obtained and classified.
Since the description in terms of «, § is equivalent (for integer p) to the one in terms of
p, we will switch between the two depending on convenience.

It is instructive to first study the case 2p = 1. This case obviously makes sense only
in the p realization. In this case the full fermionic Fock space is 23 = 8-dimensional and
split into 4 & 4 representations of s0(6). The two correspond respectively to even or odd
functions (just polynomials up to degree 3) in p.

Let us now consider the next case: p = 1. The study of this case is particularly
transparent in terms of «a, 3. To classify the states it is useful to introduce an extra
operator g
oA o A 0

DaA 054
This operator is central with respect to s0(6) and is nothing but the generator of the
previously mentioned dual s0(2p)|,=1 ~ u(1). In this case the full Fock space is 2° = 64
dimensional, it decomposes into irreducible representations of s0(6) as

(4@ 21)2 =13P 6, D15, D10g D 100 B 15_1,P6_o D 1_5 (B.9)

9= (B.8)
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where the subscript refers to the charge under g (B.8). This decomposition is concretely
realized by the solutions to the equation

o 0

We can be more explicit and show how these states look like in the space of Grafmann
variables a?, 4. For clarity we also explicitly write down the decomposition under

SO(6) — SU(3).
e 13— 1: eABo&AOzBaC,

62— 3®3: eapcaPa’ + descendants,

15 = 3®8®1®3: o+ descendants,

100 >1®3@d6: 1+ descendants,

100 > 6®3®1: ap® + descendants,

15, = 3®8®1®3: B4+ descendants,

® 6, =+ 3®3: eapcBPBY + descendants,
e 13—~ 1: eapef*BPBY,

where descendants means obtained acting with /45,
We will now consider the case p = 2, namely

(49 1)" . (B.11)

We can just take the expression (B.9) and square it. We will not write down the whole
tensor product decomposition, but just list the singlets. One can easily check that there
are 14 singlets coming from 1541 ® 1541, 649 ® 649, 1413 ® 143, where the sign have to be
considered independently; and two further singlets are contained in 10y ® 10y (2 times).
For convenience we will list the explicit expressions of the singlets:

e 1511 ® 1541 contains 4 singlets:
EABGeEFCafagBﬁlc)afoz;F 20)7 (a +» B) and/or (1 < 2). (B.12)

e 6.5 ® 645 contains 4 singlets:
eapce’PPaBaleppaalaSepn BYBL, (o <> B) and/or (1 <> 2). (B.13)

e 1.3 ® 1.3 contains 4 singlets:

eapociaPaleppralalal’, (a <> ) and/or (1 <> 2). (B.14)
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e 10y ® 10y contains 2 singlets:
GACDEBEFOéfﬁlBOngQDﬁng, (1 e 2) (B15)

A question one can ask is how these singlets transform among themselves under the
50(2p)|p=2 = 50(4)qual transformations. This question can be answered noticing that the
quantities

0 0
=af— — B 7. B.1
gr Oé[ 8@1]4 /BI 65}4 ( 6)

(no sum over I), are nothing but the Cartan generators of the §0(4)qua1, and these singlets
are indeed labeled by (g1, g2).

The 50(4)4ua transformation properties of the singlets can also be obtained consid-
ering where the singlets come from in

(4 1)*. (B.17)

The $0(4)qua acts as a rotation of the four factors (4 & 4) in the fourfold tensor product
above. Keeping in mind that a tensor product of ny fundamental with nz antifundamental
can contain singlets only if ns + nz = 0(mod 4), it is easy to see that singlets can only
come from

e 4®4®4®4: 1 singlet under s0(6)x, singlet also under $0(4)qyal,
e 1®4®4®4: 1 singlet under s0(6)g, singlet also under 50(4)4ual,
e 4®4®4®4: 2 singlets under 50(6)y x 6 under 50(4)qual,

in the last line the combinatorial factor (;1) = 6 corresponding to the possible ways of
choosing two 4 and two 4 in (B.17), is also the dimension of the s0(4)qua representation
under which these (s0(6)x) singlets transform.
The cases p =3
(49 1)°, (B.18)

can be considered analogously giving
¢ 10404®4®4®4: 4 singlets under s0(6)x x 6 under $0(6)qual,
e 104®4®4®4®4: 4 singlets under s0(6)n X 6 under $0(6)qyal,

¢ 104®4®4®4®4: 6 singlets under 50(6)x x 20 under 50(6)qual,

6

1) =6, (g) = 20 are also the dimensions of the

where again the combinatorial factors (
50(6)4ual Tepresentations.

The general p > 3 cases can be studied similarly.
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C Determinability of the Six-Point Superamplitude

This appendix is devoted to the study of the invertibility of equation (6.10). More
precisely, we will show under which conditions one can solve (6.10) for fi in terms of
the component amplitudes Agy, Agg. This is an important step, as the determination
of the six point superamplitude, and, thus the determination of all six-point component
amplitudes relies on it. Let us define the following quantities

AoA2 E
AR)r= | AV A2 a7 (C.1)
N N

for some fixed i # j # k, and let {5,3, /;:} ={1,...,6}\{i,J, k} as a set. Equation (6.10)
can be inverted iff

D3D? — DD} #0. (C.3)
Using A*- A\ =0, 25 -\* =0, 2% -2% =0, 2% -2~ = 1, one can show, performing matrix
multiplication, that
AT ()i A(E)ije = —AT ()i AE )8 » (C.4)
000

AN (E)ieA(F)ijn = —A" (£)pA(Figr + (g 0 g) : (C.5)

where T means transposition These two equations imply respectively that
Di=-Di = Dy =issDy, (C.6)
DyD_+ D.D_ =det ((p;i +p; + &)™) , (C.7)

where sy are undetermined signs. Using (C.6), (C.7) can be rewritten as
D.D_(1—s;s_)=det ((p; +p; +pp)™) . (C.8)

Since for generic momentum configurations (p; +p; +px)? is not vanishing, it follows that
sy =58, s_ = —s for some sign s. This shows that, for generic momentum configurations,

(C.3) holds, indeed
D3D? —D?D? =i(sy —s_)D3D? =2isD3D? = %det ((pi +p; +pe)™) #£0. (C.9)

To summarize, the quantities Dy, D, are not independent. Given (p; + pj + pr)?, they
are determined up to a sign s and a single function (which is a phase once we impose
the correct reality conditions). This freedom corresponds to the O(n — 4)|,—¢ = O(2)
relevant freedom in the choice of z* mentioned in Section 5. The sign is O(2)/SO(2),
and corresponds to exchanging * and x7; the freedom that remains, D*¥ — Z*'D¥,
corresponds to the SO(2) ~ U(1) freedom of rescaling 2+ — Z+1/3z+,
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D Two Component Amplitude Calculations

In the following, the amplitudes between six scalars and between six fermions are com-
puted. As discussed in section Section 6, these two amplitudes uniquely determine the
six-point superamplitude. For simplicity, consider only (anti)particles of the same flavor;
set

¢:¢4a QEZQE4’ ¢:¢47 152%54 (Dl)
The action of N' = 6 superconformal Chern—Simons theory is S = k/4w [ d*z L. Ne-

glecting terms that are irrelevant for the two specific amplitudes we are interested in,
the Lagrangian reads (see e.g. [2,41,5])

£ = Te | (A8, Axt 2 A Ay Ay = Ay, Ay = 2 Ay Ay Ay) = 500 By + D, 6D 6| . (D.2)

The gauge fields A,,, flu transform in (ad, 1), (1, ad) representations of the gauge group.
The covariant derivative D, acts on fields x € {¢, ¥}, x € {¢,?¥} as

Dux = 0ux + Aux — xA,, DX =0, %+ AX — XA, Dy =0"D,. (D.3)

The Feynman rules can be straightforwardly derived from L, using the Faddeev—Popov
regularization for the gauge field propagators.

Six-Fermion Amplitude. The tree-level amplitude
Agy = 1216(15121,152%,1/1323,1/_14%7¢52§;¢6§2)7 Vi = (i) (D.4)

can be color-ordered (3.4). The color-ordered amplitude Agy (A1, ..., Ag) contains all
contributions in which the fields 11, . . . , 9 are cyclically connected by color contractions,

Agy = .+ Agp(N) 0026010020567 + ... Ai=(M,.. ). (D5)

Two kinematically different diagrams contribute to Agy(A), see Figures 4,5. Diagram
A (left in Figure 4) evaluates to'”

Co 1
3 (12)(34)(56)2

[ (pssl1) = 2lpso|2)) ({51ps[6) = (51pal6)) — {(1,2) > 3, 4)}|, (D.6)

where A(ky, ..., ke) = A(Mky,- -, Akg), and for any momenta ¢y, . . ., gk

A6¢7T(1, [ 76) —

Gla| ... |qel) == MNewq® e - - ~€efq,fg£gh)\?. (D.7)
The overall constant C shall be left undetermined. Diagram B (left in Figure 5) reads'®

<13> <64> (1 ’P23 ’4>
(12)(45)pias

"Define plf := p3® + pi? = A9AL + A¢AL.
"¥Here, p* := papp®, i.e. plas = —(12)% — (13)% — (23)%.

Ay p(l,...,6) = 206{ +H{le2}+{4 o5 +{1 - 2,4« 5}] . (D.8)
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Figure 4: Diagram A, which contributes to the six-fermion amplitude.
Blue/dashed lines represent fundamental color contractions, red/solid lines rep-
resent antifundamental ones. When color-stripped, the left diagram gives (D.6),
and the right diagram equals the left one up to a relabeling of the external legs.

\§ NN 7,
\} - \\\ —_— /,l
\ /S — ~ N "
/ — /’/ \\\ /;/lp‘l
/’/ (] AN t'/
VY v’ e’
oy ¥ \g
1 | \
7 \\
S

Figure 5: Diagram B, which contributes to the six-fermion amplitude. When
color-stripped, the left diagram gives (D.8), and the other two diagrams equal
the left one up to relabelings of the external legs.
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The total color-ordered amplitude is a sum over all relabelings of the diagrams in Fig-
ures 4.5 that respect the color structure (D.5). The result is

Agy(l,...,6) =+ Agy1(1,2,3,4,5,6) + Agpr(1,6,5,4,3,2)
+ Agyn(1,2,3,4,5,6) — Agyp(6,5,4,3,2,1)
+ A6¢,D<1; 2, 3, 6, 5, 4) + A&/,’D(E}, 2, 1, 4, 5, 6) + {tWO CYCHC} . (Dg)
Here, “two cyclic” stands for two repetitions of all previous terms with the relabelings

Ak = Mgty Ak = Agra (mod 6) applied. Using Schouten’s identity and various relations
following from momentum conservation (P = 0), this can be simplified to'”

Asu(1,...,6) = Cs.
. (<—%<1|p3 ps|1) + %<2|p4|P6|2> — (3lpalps,—613) (2|ps,—a|p23alps —6|1)

(12) (34) (56) 2 NGy, whift by one}>

D345 |p3,—4,5 |]95 ’4> )

(1|ps|pe,—1.2|P345|P3,—a,5|P3]4) + (1|p2|pe,—1.2

—2
(6]p1]2) (3[pal5) P12

+ {two cyclic},
(D.10)

where “shift by one” means the relabeling Ay — Ax41 (mod 6).

Six-Scalar Amplitude. Again the color-ordered amplitude Agy(A1, ..., Ag) contains

all contributions in which the fields ¢4, ..., ¢g are cyclically connected by color contrac-
tions,
Ags = Ag(013!, 022, 653 Gun!, 657, 6 o = d(\e)
= .+ Ags(N) 0oz oo + A= (A, he) . (DD

The color-ordered amplitude receives contributions from three kinematically different
diagrams. Two of them are the diagrams A and B, Figures 4,5, with all fermion lines
replaced by scalar lines. The scalar version of diagram A (left in Figure 4) reads

4C; 1
3 (12)(34)(56)2

Agpr(L,...,6) = — ((Upsl2)@Blpsle) — {5 6}) . (D.12)

while the scalar version of diagram B (left in Figure 5) is

<1|p3|2><4|p6|5>

AG 7])(1,...,6) :806 (Dl?))
¢ (12)(45)pTa;
A further contribution comes from diagram C, see Figure 6. It evaluates to
16)(2 15)(2
Agsa(l, .. 6) = —20,161(25) + {15)(26) (D.14)

(12)(56)

Ypiik,. =pjEpp+...
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6 s

Figure 6: Diagram C that contributes to the six-scalar amplitude. Again,
blue/dashed lines represent fundamental color contractions, red/solid lines rep-
resent antifundamental ones. When color-stripped, the left diagram gives (D.14),
and the other two diagrams equal the left one up to relabelings of the external
legs.

Again, the total color-ordered amplitude is a sum over all relabelings of these diagrams
that respect the color structure. The sum of all contributions is

Aso(1,...,6) =+ Agsr(1,2,3,4,5,6) + Agor(1,6,5,4,3,2)
+ Aesn(1,2,3,4,5,6) + Aesn(6,5,4,3,2,1)
— Aesn(1,2,3,6,5,4) — Agyn(3,2,1,4,5, 6)
+ Aepa(1,2,3,4,5,6) + Apsa(3,2,1,6,5,4)
—2A465(1,2,3,6,5,4) + {two cyclic} . (D.15)

This can be simplified to

B (3|ps|p1|pslpalpal3) + (14)*(2|ps|ps|ps|2)
Asgll--.6) = Co (4 (1|pa|ps|palps|ps|1)
N <2§<16><35>(24> — 5(13)(56)(24) + (16)(23)(45) ¢ (51p1[6) (3[ps[4)
(12)(34)(56) (34) (56) P33
(26)(35)((16)*(34)> + (12)*(45)%)

-8 + {two cyclic}. (D.16)
(2[p1[6) (3[pal5) P12 >

+ {shift by one})

E Factorization of the Six-Point Superamplitude

Consider the quantity:

[ AN Ao, 0, ) oy A, A s ). (E1)

13

where A = (A%, 7*) and the result doesn’t depend on the choice of sign 4= . The integra-
tion can be trivially performed because of the delta functions using:

/ o (Q7 + i pu)8%(Q3" — i ut) = 8%(Q1 + Q)8 (€@ 1) (E.2)
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and
/ PAS (PP + X253 (Psb — AR F(R) = 83(P™ + Psb)s(P2) (F(X) + F(-X)) (E.3)

where on the right hand side ) is the solution to the equation AN = Pgb. Reminding
that (6.2)

Aq(1,2,3,4) = 5°(P) 6°(Q) f (A1, Mgy Az, A\d) (E.4)
and using the properties of f()\), we obtain:
Lok 3 3 Aaib
P2 5(P13)(5 ( )6 (Q)5 (EabQ )\ )f()\l, )\2, )\3, )\)f(:tl)\ /\4, /\5, /\6) (E 5)
13

This can be rewritten as

1

Pz 0(P)0(P) (@) () (V) (E.6)

which equals Ag in the limit pfy; — 0, cf. Section 6.

F The Metric of osp(6|4)

Introducing matrices (E*g)’; = §%10p; with A|B = a,b, A, B, ..., the fundamental rep-
resentation M of osp(6]4) consisting of (4]6) x (4|6) matrices can be written as

'Qab ;’Bab QaA DaA b _ 75;)1}1 Eab + Eba EaA _EaA
A Bar £ | Gan S || Eab + B B+ 3001 |  Eaa —Eaa
6., QU [ mip RAP N E4* —FEac Efp Ep” — E%p
Goa Q% | Rup R'p —Ey° Ea. | Ep* —E'p Ep”
(F.1)
For the Lorentz generator for instance, this equation is to be understood as
EY — %5;}]1 0 0 0
a1 0 B+ 364110 0
Mgn] = 0 0 00 |’ (F.2)
0 0 0 0
where we raise and lower Lorentz indices with %, ¢, and have
EBA = (EAB)T7 EAa = (EaA>T> EAc = (gacEcA)T~ (F3)
Furthermore, the dilatation generator is defined by
i 0 |00
0 —iI(o 0
_ 2
M[D] = 0 0 To 0 (F.4)
0O 0 (0O
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The Killing form of 0sp(6]|4) vanishes. We compute the metric defined by
Jap = g<3a736) = sTr M[AQ]M[ﬁﬁL (F5)

which obeys
9o = (=1)"gsa,  gas =01if |a] # ). (F.6)

Here, || denotes the GraBmann degree of the generator J,. We change the basis of
generators and introduce

VD% = £ + 5D, (F.7)
Then the metric has the following non-vanishing components

9(D%, D) = 28355,
9(B?, Rea) = 9(Rea, B*°) = —20207 — 2536,

9(Q*,6yp) = —g(Gpp, Q™) = 26307,
9(Q%4,6,7) = —g(6,", Q%) = 20567,
g(Rp, Mp) = g(RCp, W) = —26405,
g(RE Reop) = g(Reop, RAP) = 20465 — 20565, (F.8)

The inverse metric g = g71(Jo,J5) satisfies
9ap9” = 62 = 9" gpa- (F.9)
Its non-zero components are
97 (D% D
97 (B?, Rea

) = 30405,
) = 9 (Rea, B) = — 3028 — 30400,
B) = —g (G, Q) = — L5707,
1Q%,6,°) = —g7H (6,5, 2%) = — 15557,
)
)=

O, R0p) = g7 (RO, R ) = 435
HRep, MAP) = L6865 — Lop00. (F.10)

G The Level-One Generators PM® and Q1B

We can use the metric and read off the structure constants from the commutation re-
lations of 0sp(6]4) to compute the Yangian level-one generators )% and QM4 Ac-
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cording to (7.3) we have

~(0)
=f 76‘1‘ b Z JigJ J’Y
1<t
~(0) ~ (0
_ :/Bﬁcd et gﬁﬁ gw Jz(ﬂ) 3 57)

20080+ 8301) 3 (S g g O

j<i

Red

+ fe.26,0 "9

(i ¢ j)

GfFD.QGgGeEQhH ng)gGQ§0)hH

— %Z (QZ(O)(aAD§O)b)A _ 2)50)(acm§0)6b) (i j)> ' (G.1)

j<i
In order to check consistency, we also determine Q@4

~ 0
= e Y353

7<t

— fﬁﬁ bBQGbBD“AgBB 7Y Z

j<i

a f e H
= 25500y ( Frue, 57 e g2 pOnt GO (09

j<t

f hH 0)hH 0
+ fiDCdGeEGng@ @ ‘9 Gerd Qz( ) QJ§ )fg
+ f%CDGSEGbBgWCDWFGgGeEDhHQEO)hH%(O)

(i j)

0)bA a BA aB A
S (0%, o g

j<t

One can easily convince oneself that consistently

{1, 2} = spp”,

H The Serre Relations

0)F
G

ba . .
)

(G.2)

(G.3)

In the following, we will show how the homomorphicity condition (7.32) of the coproduct
(7.29,7.30) leads to the Serre relations (7.35). First, we multiply (7.32) by the algebra

structure constants and take cyclic permutations to find

fas? AT, TN + eyclic(a, B,0) = fa57[ATV), AT + eyclic(a, B,6).  (H.1)
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It is obvious that (H.1) follows from (7.32); how about the other direction? The answer
is that (H.1) equals the X component of (7.32) while the adjoint component is projected
out. The reason for this is rather simple: Equation (7.32) can be written in the form
fas’Zs + Xop = 0, where X5 € X and Z5 € Adj (cf. (7.33)). Now showing that (H.1)
does not contain the adjoint boils down to using the Jacobi identity in the form

f85” fan + cyclic(e, B, 6) = 0. (H.2)

Furthermore that only the adjoint and nothing else is projected out in going from (7.32)
to (H.1) follows from
.]COZBA/U@7 =0 = UaB = faﬁvvw (H3)

for some v, (or equivalently that the second cohomology of g vanishes). Since X does
not contain the adjoint, we have separately X,z = 0 and fa55Z5 = 0. The first equation
will lead to the Serre relations. The second equation represents the definition of the
coproduct for the level-two generators.

In order to derive the Serre relations we rewrite the right hand side of (7.32) as
(cf. [34])

ATD), AT =T, T @1+ 10 (TN, T8

h
+ (T e 707 @1+ 10 73V - (a ¢ 8))
h2
+ Zfa’Y(Sfﬁps[jw(O) ® \75(0), jp(O) ® \76(0)] (H4)

It is rather straightforward to rewrite the last two lines in this equation in the form of

h

eI © T = 77 © ID), (H.5)
h2

T I S (T @ TP T + IO T 0 TL0). (H.6)

Now it is easy to see that (H.5) vanishes due to the Jacobi identity when plugged into
the right hand side of (H.1). Using the Jacobi identity twice, the contribution to (H.1)
coming from the second piece (H.6) reads

h2
e s £ (R, 70 @ 70 + T @ {27, 0Y) + eyelic(a, 5,7). - (H7)

Since the coproduct on J© has the trivial form (7.29) one can rewrite this as?

A(Sapy) = Sapy © 1 =1 & Sapy, (H.8)

where

h2
Sapy = 5y fa [ 1 1T, T T (H.9)

20We thank Lucy Gow for discussions on this point and sharing some of her notes with us.
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Putting everything together (H.1) becomes
0= A(Kapy) = Kagy ©®1 =1 ® Kags, (H.10)

where now

Kopy = Sapy — (fag’[TD, TV] + eyclic(a, B,7)). (H.11)

A sufficient condition for (H.10) to be satisfied is K,3, = 0 which, rewriting fa/gajé(l) =
[jogo), jﬁ(l)], are the well known Serre relations (7.35). One of the reasons for rederiving
the Serre relations here is to convince the reader and ourselves that only the X component
of {J,J,J} contributes to the right hand side of (7.35). As we have seen in Section 7,
this is very useful for proving the Serre relations for specific representations.

In order to show that the Serre relations are indeed satisfied for a certain represen-
tation, one can start with the case n = 1, i.e. a representation acting on only one vector
space and define

Pla=1(T5”)

3O,
p|n:1(j6£1)) 0.

(H.12)

The left hand side of (7.35) vanishes for the one-site representation p|,—;. Assuming
that also the right hand side of this equation vanishes for the one-site representation,
one can promote (7.35) from one to n sites. The point is that the coproduct preserves
the Serre relations, that is if 7 and J) satisfy the Serre relations then also A(J®)
and A(JW) do. The reason behind this is an inductive argument. Assuming the Serre
relations to be satisfied for n sites implies the coproduct to be a homomorphism (7.31)
for n + 1 sites. Acting with A on (7.35) thus yields the Serre relations for n + 1 sites
which in turn implies (7.31) for n + 2 sites. This means that the Serre relations will be
automatically satisfied by the choice (H.12) promoted to n vector spaces by successive
application of the coproduct. To be explicit, the action on two sites is given by

Placa(AT0) = 1030 +30 @ 1= E:i&
Plaza(AT) = 730 @30 = 7 > 3D, (H.13)
1<5<i<2

where we recover the original bilocal form of the level-one generators (7.3). Here,

pln=2(A @ B) = (pln=14) @ (pln=1B). (H.14)

Note that the above analysis is completely independent of the explicit representation
p. The criterion for any representation to obey the Serre relations is thus the vanishing
of the right hand side of (7.35) for that specific representation. For showing this, it is
crucial that the right hand side of (7.35) transforms in the representation X as shown
above.
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I Conventions and Identities

Throughout the article, the spacetime metric is fixed to n** =17, = diag(— + +). The
totally antisymmetric tensor e#*? is defined such that gp1p = —%2 = 1.

€12 = —612 = 1. (Il)

The relation between spacetime vectors and bispinors is given by

pab — (U“)abp,“ p“ — _%(U“)abpab, (1.2)

where a convenient choice for the matrices (o#)® is

@ =T ) o= () er=(g).

They obey the following relations:
o = =2 (L4)

M —
O upOpcd = —Eac€bd — €ad€bc » (15)

5ul/p(o-u)ab(o-y)cd(0-p)ef - %(azcgbegdf + €acbfEde + €ad€beef + €adEbfEece
+ Eae€bcldf + €ae€bdEef + €afEbcCde + gafgbdgce) . (16)

The matrices (0#)% = ep.(0#)* obey the algebra
(O-M)ab(a,u)bc — gm/(sab 4 €“Vp(0'p)ac. (17)
We use (..) and [..] for symmetrization or antisymmetrization of indices, respectively, i.e.

X(ab) = Xab + Xbm X[ab] = Xab - Xba~ (18)
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