```
AEI-2010-048, CALT-68-2783,
    IPMU-10-0053, YITP-10-20
```


Notes on the K3 Surface and the Mathieu group M_{24}

Tohru Eguchi ${ }^{1}$, Hirosi Ooguri ${ }^{2,3,4}$ and Yuji Tachikawa ${ }^{5}$
${ }^{1}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 Japan
${ }^{2}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{3}$ Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8582, Japan
${ }^{4}$ Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam, Germany
${ }^{5}$ School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract

We point out that the elliptic genus of the K3 surface has a natural decomposition in terms of dimensions of irreducible representations of the largest Mathieu group M_{24}. The reason is yet a mystery.

Elliptic genus of a complex D-dimensional hyperKähler manifold is defined as

$$
\begin{equation*}
Z_{\text {ell }}(\tau ; z)=\operatorname{Tr}_{\mathcal{R} \times \mathcal{R}}(-1)^{F_{L}+F_{R}} q^{L_{0}} \bar{q}^{\bar{L}_{0}} e^{4 \pi i z J_{0, L}^{3}} \tag{1.1}
\end{equation*}
$$

This is a Jacobi form of weight $=0$ and index $\frac{D}{2}$. Here L_{0} and \bar{L}_{0} are zero modes of the left- and right-moving Virasoro operators and J_{0}^{3} is the zero mode of the 3rd component of the affine $S U(2)$ algebra. F_{L} and F_{R} are the left- and right-moving fermion numbers. Trace is taken over the Ramond sector of the theory.

Elliptic genus for K3 surface was explicitly calculated in [1] and is given by

$$
\begin{equation*}
Z_{\text {ell }}(K 3)(\tau ; z)=8\left[\left(\frac{\theta_{2}(\tau ; z)}{\theta_{2}(\tau ; 0)}\right)^{2}+\left(\frac{\theta_{3}(\tau ; z)}{\theta_{3}(\tau ; 0)}\right)^{2}+\left(\frac{\theta_{4}(\tau ; z)}{\theta_{4}(\tau ; 0)}\right)^{2}\right] . \tag{1.2}
\end{equation*}
$$

Here $\theta_{i}(\tau ; z)(i=2,3,4)$ are Jacobi theta functions. Actually the space of Jacobi forms of weight $=0$ and index $=1$ is known to be one-dimensional and thus the above result could have been guessed without explicit computation. We find that $Z_{\text {ell }}(K 3)(\tau ; z=0)=24$ and $Z_{\text {ell }}(K 3)(\tau ; z=1 / 2)=16+\mathcal{O}(q)$ and thus (1.2) reproduces the Euler number and signature of K3.

In Ref. [1] and more recently in [2] the expansion of the K3 elliptic genus in terms of irreducible representations of $\mathcal{N}=4$ algebra has been discussed in detail. We first provide the data of representation theory: Let us introduce the character formula of the BPS (short) representation of $\operatorname{spin} \ell=0$ in Ramond sector with $(-1)^{F}$ insertion

$$
\begin{align*}
& \operatorname{ch}_{h=\frac{1}{4}, \ell=0}^{\hat{R}}(\tau ; z)=\frac{\theta_{1}(\tau ; z)^{2}}{\eta(\tau)^{3}} \mu(\tau ; z), \tag{1.3}\\
& \mu(\tau ; z)=\frac{-i e^{\pi i z}}{\theta_{1}(\tau ; z)} \sum_{n=-\infty}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)} e^{2 \pi i n z}}{1-q^{n} e^{2 \pi i z}} . \tag{1.4}
\end{align*}
$$

The BPS representation has a non-vanishing index

$$
\begin{equation*}
\operatorname{ch}_{h=\frac{1}{4}, \ell=0}^{\hat{R}}(\tau ; z=0)=1 . \tag{1.5}
\end{equation*}
$$

We also introduce the character of a non-BPS (long) representation with conformal dimension h

$$
\begin{equation*}
q^{h-\frac{3}{8}} \frac{\theta_{1}(\tau ; z)^{2}}{\eta(\tau)^{3}} \tag{1.6}
\end{equation*}
$$

Then the elliptic genus is expanded as

$$
\begin{equation*}
Z_{\text {ell }}(K 3)(\tau ; z)=24 \operatorname{ch}_{h=\frac{1}{4}, \ell=0}^{\hat{R}}(\tau ; z)+\Sigma(\tau) \frac{\theta_{1}(\tau ; z)^{2}}{\eta(\tau)^{3}} \tag{1.7}
\end{equation*}
$$

where the expansion function $\Sigma(\tau)$ is given by

$$
\begin{align*}
\Sigma(\tau) & =-8\left[\mu\left(\tau ; z=\frac{1}{2}\right)+\mu\left(\tau ; z=\frac{1+\tau}{2}\right)+\mu\left(\tau ; z=\frac{\tau}{2}\right)\right] \tag{1.8}\\
& =-2 q^{-1 / 8}\left(1-\sum_{n=1}^{\infty} A_{n} q^{n}\right) \tag{1.9}
\end{align*}
$$

If one uses the relation that the non-BPS representation splits into a sum of BPS representations at the unitarity bound

$$
\begin{equation*}
q^{-\frac{1}{8}} \frac{\theta_{1}(\tau ; z)^{2}}{\eta(\tau)^{3}}=2 \operatorname{ch}_{h=\frac{1}{4}, \ell=0}^{\hat{R}}(\tau ; z)+\operatorname{ch}_{h=\frac{1}{4}, \ell=\frac{1}{2}}^{\hat{R}}(\tau ; z), \tag{1.10}
\end{equation*}
$$

the polar term in Σ may be eliminated and the above decomposition (1.7) can also be written as

$$
\begin{align*}
Z_{\text {ell }}(K 3)(\tau ; z)= & 20 \operatorname{ch}_{h=\frac{1}{4}, \ell=0}^{\hat{R}}(\tau ; z)-2 \operatorname{ch}_{h=\frac{1}{4}, \ell=\frac{1}{2}}^{\hat{R}}(\tau ; z) \\
& +2 \sum_{n=1}^{\infty} A_{n} q^{n-\frac{1}{8}} \frac{\theta_{1}(\tau ; z)^{2}}{\eta(\tau)^{3}} . \tag{1.11}
\end{align*}
$$

The coefficients A_{n} have been computed explicitly for lower orders by expanding the series (1.8),

n	1	2	3	4	5	6	7	8	9	\cdots
A_{n}	45	231	770	2277	5796	13915	30843	65550	132825	\cdots

and it was conjectured that they are all positive integers [3].
On the other hand the asymptotic behavior of A_{n} at large n has recently been derived using the analogue of the Rademacher expansion of modular forms [2]

$$
\begin{equation*}
A_{n} \approx \frac{2}{\sqrt{8 n-1}} e^{2 \pi \sqrt{\frac{1}{2}\left(n-\frac{1}{8}\right)}} . \tag{1.13}
\end{equation*}
$$

It turns out that the above formula (1.13) gives a good estimate of A_{n} even at smaller values of n and this confirms the positivity of the coefficients
A_{n}. Note that the series $\mu(\tau ; z)$ (1.4) has the form of a Lerch sum (or mock theta function) and thus has a complex modular transformation law which involves Mordell's integral. In such a situation we can use the method recently developed by mathematicians [4, 5, ,6] and construct the PoincaréMaas series to derive the above asymptotic formula.

The above table contains a surprise: the first 5 coefficients, A_{1}, \ldots, A_{5}, are equal to dimensions of irreducible representations of M_{24}, the largest Mathieu group, see Appendix [. The coefficients A_{6} and A_{7} can also be nicely decomposed as

$$
\begin{align*}
& A_{6}=3520+10395 \tag{1.14}\\
& A_{7}=10395+2 \times 5796+5544+3312 \tag{1.15}
\end{align*}
$$

into the sum of dimensions. For $n \geq 8$, it is still possible to decompose A_{n} into a sum of dimensions of irreducible representations of M_{24}, but decompositions are not as unique 1

The non-Abelian symplectic symmetry of K3 was studied mathematically by [7, 8]. Mukai enumerated eleven K3 surfaces which possess finite nonAbelian automorphism groups. It turns out that all these groups are various subgroups of the Mathieu group M_{24}, see Appendix B for more details. Is it possible that these automorphism groups at isolated points in the moduli space of K3 surface are enhanced to M_{24} over the whole of moduli space when we consider the elliptic genus? This question is currently under study using Gepner models and matrix factorization.

As discussed in [9], expansion coefficients of elliptic genera of hyperKähler manifolds in general have an exponential growth and are closely related to the black hole entropy. In particular in the case of k -th symmetric product of K3 surfaces we obtain the leading behavior

$$
\begin{equation*}
A_{n} \approx e^{2 \pi \sqrt{\frac{k^{2}}{k+1} n-\left(\frac{k}{2(k+1)}\right)^{2}}} \tag{1.16}
\end{equation*}
$$

which gives the entropy of the standard D1-D5 black hole $S \approx 2 \pi \sqrt{k n}$ at large $k\left(k=Q_{1} Q_{5}\right.$ where Q_{1} and Q_{5} are the numbers of D1 and D5 branes). Thus the elliptic genus of K3 surface may be considered as describing the multiplicity of microstates of a small black hole with $Q_{1}=Q_{5}=1$.

[^0]Here the situation is somewhat similar to a model of black hole described by Witten in [10], where microstates of a small black hole span the representation space of the monster group. Although the partition function of the theory is discussed, the relevant CFT is modular invariant separately in left and right sectors and the discussion is effectively the same as considering the elliptic genus.

It will be extremely interesting to see if the Mathieu group M_{24} in fact acts on the elliptic genus of K3.

Acknowledgment

The authors thank the hospitality of the Aspen Center of Physics during the workshop "Unity of String Theory," when the observation reported in this paper was made. We would like to thank S. Mukai for discussions.
T. E. is supported in part by Grant in Aid from the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). H. O. is supported in part by U.S. Department of Energy grant DE-FG03-92-ER40701, the World Premier International Research Center Initiative and a Grant-inAid for Scientific Research (C) 20540256 of MEXT, and the Humboldt Research Award. Y. T. is supported in part by the NSF grant PHY-0503584, and by the Marvin L. Goldberger membership at the Institute for Advanced Study.

A Data of M_{24}

The largest of the Mathieu group, M_{24}, has

$$
\begin{equation*}
2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23=244823040 \tag{A.1}
\end{equation*}
$$

elements. There are 26 conjugacy classes and 26 irreducible representations. The character table is given in Table 1, whose data is taken from [11]. In the character table, $e_{p}^{ \pm}$stands for

$$
\begin{equation*}
e_{p}^{ \pm}=(\pm \sqrt{-p}-1) / 2 \tag{A.2}
\end{equation*}
$$

The dimensions of the irreducible representations are, in the increasing
order,

$$
\begin{align*}
& 1,23,45,45,231,231,252,253,483,770,770, \\
& 990,990,1035,1035,1035,1265,1771,2024, \\
& 2277,3312,3520,5313,5796,5544,10395 . \tag{A.3}
\end{align*}
$$

Here the irreducible representations of dimensions

$$
\begin{equation*}
45,231,770,990,1035 \tag{A.4}
\end{equation*}
$$

come in complex conjugate pairs. There is in addition an extra real 1035dimensional irreducible representation.

[^1]
B $\quad M_{24}$ and the classical geometry of K3

Here we briefly summarize the relation between the classical geometry of the K3 surface and M_{24}, first found in [7] and elaborated in [8].

Before proceeding, we need to recall the definition of M_{24}. Of many equivalent ways to define it, one that is most understandable to string theorists is to use an even self-dual lattice of dimension 24 . Consider the root lattice of A_{1} whose generator has squared length 2 . Let us denote its weight lattice by A_{1}^{*} whose generator has squared length $1 / 2$. Take the 24 -dimensional lattice $A_{1}{ }^{24}$. This is even but not self-dual, because the dual lattice is $A_{1}^{* 24}$. An even self-dual lattice N containing $A_{1}{ }^{24}$ will have the structure

$$
\begin{equation*}
A_{1}{ }^{24} \subset N \subset A_{1}^{* 24} \tag{B.1}
\end{equation*}
$$

Let $\mathcal{G}=N / A_{1}{ }^{24}$, which is a vector subspace of $A_{1}^{* 24} / A_{1}{ }^{24} \simeq \mathbb{Z}_{2}{ }^{24}$. Let us represent an element of \mathcal{G} by a sequence of twenty-four 0 and 1 , and define the weight of a vector to be the number of 1's in it.

The self-duality of N translates to the fact \mathcal{G} is 12 -dimensional. The evenness translates to the fact that the weight of every element of \mathcal{G} is a multiple of 4 . Let us further demand the vectors of N whose length squared are two are the roots of $A_{1}{ }^{24}$ and not more. Then \mathcal{G} does not have an element with weight 4.

These conditions fix the form of \mathcal{G} uniquely, and \mathcal{G} is known as the extended binary Golay code. M_{24} is defined as the subgroup of the permutation S_{24} of the coordinates of $\mathbb{Z}_{2}{ }^{24}$ which preserves \mathcal{G}.

The lattice N thus constructed defines a chiral CFT with $c=24$ whose current algebra is $A_{1}{ }^{24}$. Therefore M_{24} is the discrete symmetry of this chiral CFT.

Now let us recall that the cohomology lattice of K3,

$$
\begin{equation*}
\Lambda=H^{*}(K 3, \mathbb{Z}) \tag{B.2}
\end{equation*}
$$

is also an even self-dual lattice of dimension 24 , but with signature $(4,20)$. The close connection between M_{24} and the geometry of the K3 surface stems from this fact.

Take a K3 surface S, and let G its symmetry preserving the holomorphic 2 -form. Let Λ^{G} the part of Λ preserved by G, and Λ_{G} its orthogonal complement. Λ_{G} is inside the primitive part of $H^{1,1}$, thus it is negative definite. Using Nikulin's result, it can be shown that Λ_{G} is a sublattice of N. Therefore G is a subgroup of M_{24}.
G cannot be M_{24} itself, however. The action of G on S preserves at least $H^{0}, H^{4}, H^{2,0}, H^{0,2}$ and the Kähler form. Hence Λ^{G} is at least fivedimensional, and Λ_{G} is at most 19-dimensional. This implies that the action of G on N as real linear maps should at least have five-dimensional fixed subspace. This translates to the fact that the action of G on 24 points as a subgroup of M_{24} splits them into at least five orbits.

Similarly, starting from a subgroup G of M_{24} which acts on 24 points with at least five orbits, one can construct the action of G on $H^{1,1}$. Using the global Torelli theorem, this translates to the existence of a K3 surface S whose symmetry is G.

One example is the Fermat quartic, $X^{4}+Y^{4}+Z^{4}+W^{4}=0$ in $\mathbb{C P}^{3}$. The symmetry is $\left(\mathbb{Z}_{4}\right)^{2} \rtimes S_{4}$, with 384 elements. This is indeed a subgroup of M_{24} which decomposes 24 points into five orbits, of length $1,1,2,4$ and 16.

More examples and details of the analysis can be found in [7] and in [8].

References

[1] T. Eguchi, H. Ooguri, A. Taormina and S. K. Yang, "Superconformal Algebras and String Compactification on Manifolds with $S U(N)$ Holonomy," Nucl. Phys. B 315 193, 1989.
[2] T. Eguchi and K. Hikami, "Superconformal Algebras and Mock Theta Functions 2. Rademacher Expansion for K3 Surface," Commun. Number Theor. and Phys. 3, 531-554, 2009 [arXiv:0904.0911 [math-ph]].
[3] H. Ooguri, "Superconformal Symmetry and Geometry of Ricci Flat Kähler Manifolds," Int. J. Mod. Phys. A 4 4303, 1989; A. Taormina and K. Wendland, unpublished 1989.
[4] S. P. Zwegers, "Mock Theta Functions," Ph.D. Thesis, Universiteit Utrecht, 2002.
[5] K. Bringmann and K. Ono, "The $f(q)$ mock theta function conjecture and partition ranks," Invent. Math. 165 243-266, 2006; "Coefficients of harmonic Maas forms," preprint 2008.
[6] D. Zagier, "Ramanujan's Mock Theta Functions and Their Applications," Séminaire Bourbaki 60ème année, 2006-2007, n 986.
[7] S. Mukai, "Finite groups of automorphisms of $K 3$ surfaces and the Mathieu group," Invent. Math., 94 183, 1988.
[8] S. Kondo, "Niemeier Lattices, Mathieu Groups and Finite Groups of Symplectic Automorphisms of K3 surfaces," Duke Math. Journal, 92 593, 1998 (with an appendix by S. Mukai).
[9] T. Eguchi and K. Hikami, "N=4 Superconformal Algebra and the Entropy of HyperKähler Manifolds," JHEP 1002 019, 2010 [arXiv:0909.0410 [hep-th]].
[10] E. Witten, "Three-Dimensional Gravity Revisited," arXiv:0706.3359, 2007.
[11] Mathematical Society of Japan, "Iwanami Suugaku Jiten." 4th Japanese ed., Iwanami Shoten, 2007. (English translation of the 3rd Japanese edition is available as the 2nd English edition of "Encyclopedic Dictionary of Mathematics," MIT press, 1987.)

[^0]: ${ }^{1}$ It may also be interesting to point out that $2,3,5,7,11$, and 23 appear in prime factorization of A_{n} more frequently than any other prime numbers and with certain periodicities in n. These are also prime factors of the order of M_{24}.

[^1]: Table 1: Character table of M_{24}.

