
ar
X

iv
:1

00
3.

61
09

v1
  [

he
p-

th
] 

 3
1 

M
ar

 2
01

0

Supersymmetric dualities beyond the conformal window
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Using the superconformal indices techniques, we construct Seiberg type dualities for N = 1 super-
symmetric field theories outside the conformal windows. These theories are physically distinguished
by the presence of fields with small or negative R-charges for chiral superfields.
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I. INTRODUCTION

Some of 4D N = 1 supersymmetric gauge field theo-
ries are known to be related by the Seiberg duality [1].
A full list of presently known dualities of such type for
simple gauge groups Gc = SU(N), SP (2N), G2 is given
in [2]. Remarkably, many of the listed dualities are new.
Their discovery is based on the interplay between su-
perconformal indices of [3–5] and the theory of elliptic
hypergeometric integrals formulated in [6, 7] (see also [8]
for a general survey).
The SU(2, 2|1) space-time symmetry group is gener-

ated by Ji, J i (SU(2) subgroups generators, or Lorentz

rotations), Pµ, Qα, Qα̇ (supertranslations), Kµ, S
α, S

α̇

(special superconformal transformations), H (dilations)
and R (U(1)R-rotations). For a distinguished pair of su-

percharges, say, Q = Q1 and Q† = −S
1
, one has

{Q,Q†} = 2H, H = H − 2J3 − 3R/2, (1)

and the superconformal index is defined by the matrix
integral

I(p, q, fk) =

∫

Gc

dµ(g)Tr
(
(−1)FpR/2+J3qR/2−J3

× e
∑

a
gaG

a

e
∑

k
fkF

k

e−βH
)
, R = H −R/2, (2)

where dµ(g) is the Gc-invariant measure and F is the
fermion number operator. Operators Ga and F k are the
gauge and flavor group generators; p, q, ga, fk, β are group
parameters (chemical potentials). The trace is taken over
the whole space of states, but, because the operators
standing in (2) preserve relation (1), only the zero modes
of the operatorH contribute to the trace (hence, formally
there is no dependence on β).
The key idea of Römelsberger [5] on the equality of su-

perconformal indices (2) for the Seiberg dual theories was
realized first by Dolan and Osborn for a number of exam-
ples [9]. It appears that these equalities are expressed in
terms of the exact computability of elliptic beta integrals
discovered in [6] or nontrivial symmetry transformations
for higher order elliptic hypergeometric functions on var-
ious root systems [7, 10].

In addition to the description of new N = 1 dualities
from known identities for integrals, another important
result of [2] consisted in the formulation of new mathe-
matical conjectures for integrals’ identities following from
known dualities. There are also examples when both the
dualities and corresponding relations for integrals (in-
dices) are new. The power of the theory of elliptic hyper-
geometric integrals in application to the superconformal
indices techniques was demonstrated also in recent pa-
pers by Gadde et al [11, 12], where some of the N = 2
superconformal dualities have been considered.
Here we focus on some physical consequences following

from the considerations of [2]. Namely, we concentrate
on implications for the conformal windows introduced in
[1, 13]. In the original Seiberg work [1] it was shown
that the corresponding N = 1 SQCD duality has distin-
guished properties if the number of colors Nc ≡ N of the
gauge group SU(N) and the number of chiral superfields
(flavors) Nf satisfy the following inequalities

3N/2 < Nf < 3N. (3)

This conformal window guarantees that both dual the-
ories have asymptotic freedom and represent interacting
superconformal theories at the infrared fixed points. For
SP (2N) gauge groups withNf flavors the conformal win-
dow is [13]

3(N + 1)/2 < Nf < 3(N + 1). (4)

After some time it started to be believed that these con-
formal windows serve as the general necessary conditions
for the existence of dualities between interacting gauge
theories. The primary goal of this paper is to show that
this is not the case.
Equality of superconformal indices of dual theories is a

new non-trivial indication on the validity of Seiberg du-
ality conjectures. Earlier there were only three following
justifying arguments [1].
1. The ’t Hooft anomaly matching conditions. They

were conjectured in [2] to be a consequence of the so-
called total ellipticity for the elliptic hypergeometric in-
tegrals [8] describing superconformal indices.
2. Matching reduction of the number of flavors Nf →

Nf − 1. Integrating out k-th flavor quarks by the mass
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term M k
k QkQ̃

k in the original theory results in Higgsing
the magnetic theory gauge group with a reduction of the
additional meson fields. From the elliptic hypergeometric
integrals point of view this is realized by restricting in
a special way a pair of parameters (sktk = pq) which
reduces the indices appropriately.
3. Matching of the moduli spaces and the gauge invari-

ant operators in dual theories. There is no clear moduli
space description in the superconformal indices. Perhaps,
it enters only through quantum numbers fixed by super-
potentials.

II. DUALITIES OUTSIDE THE CONFORMAL

WINDOW FOR SU(N) GAUGE GROUP

A. SU(2N) gauge group with Nf = 4

The starting electric theory has Gc = SU(2N) and the
matter fields content 4f + 4f + TA + TA, where f and
TA denote the fundamental and absolutely antisymmetric
tensor representations of Gc (the bar means conjugate
representations). The flavor group for N > 2 is SU(4)×
SU(4) × U(1)1 × U(1)2 × U(1)3. The superconformal
index is given by the following integral [2]

IE = κN

∫

T2N−1

∏

1≤i<j≤2N

Γ(Uzizj , V z−1
i z−1

j ; p, q)

Γ(z−1
i zj , ziz

−1
j ; p, q)

×
2N∏

j=1

4∏

k=1

Γ(skzj, tkz
−1
j ; p, q)

2N−1∏

j=1

dzj
2πizj

, (5)

where
∏2N

j=1 zj = 1, T is the unit circle with

positive orientation, |U |, |V |, |sk|, |tk| < 1, and

(UV )2N−2
∏4

k=1 sktk = (pq)2. We use conven-
tions Γ(a, b; p, q) ≡ Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) ≡
Γ(az; p, q)Γ(az−1; p, q), where

Γ(z; p, q) =

∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1,

is the elliptic gamma function. Finally,

κN =
(p; p)2N−1

∞ (q; q)2N−1
∞

(2N)!

with (a; q)∞ =
∏∞

k=0(1− aqk). The parameters U, V, sk,
tk are related to fk in (2) and zj replace ga.
In [2] we described three magnetic duals for this model

(one of which was found earlier in [14]). The dualities be-
yond the conformal window of interest are obtained after
some “reduction” of these theories. To obtain them we
restrict the parameters U and V in (5) by the constraint

UV = pq. (6)

Now
∏4

k=1 sktk = (pq)4−2N and some of the parameters
have modulus bigger than 1. In this case it is necessary to

use the analytical continuation of integral (5) reached by
passing from T to a contour separating sequences of in-
tegrand’s poles converging to zero from their reciprocals.
The parameters U and V disappear then completely from
the electric superconformal index, so that it starts to co-
incide with the index of the theory without the fields TA

and TA and global U(1)1 and U(1)3 symmetries. After
such a “decoupling”, the electric theory coincides exactly
with the Seiberg SQCD with Nf = 4 [1]:

SU(2N) SU(4) SU(4) U(1)2 U(1)R

Q f f 1 1 − 1
2 (N − 2)

Q̃ f 1 f -1 − 1
2 (N − 2)

V adj 1 1 0 1

In all our tables the first column contains symbols of the
fields and the second — the gauge group representations.
For U(1) groups we give corresponding hypercharges.

The dual magnetic theories are reduced in a similar
way. Namely, we substitute U =

√
pqx, V =

√
pqx−1

into the corresponding magnetic indices described in [2]
and reinterpret the latter as the indices of reduced the-
ories. The fields content and some of the R-charges of
the resulting theories differ from the original ones. Some
of the indices depend on the parameter x reflecting pres-
ence of the additional global U(1)1-group. As a result,
we find the following set of dualities.

The first magnetic theory is described in the table be-
low

SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)R

q f f 1 0 -1 − 1
2 (N − 2)

q̃ f 1 f 0 1 − 1
2 (N − 2)

Hm 1 TA 1 -1 2 2m−N + 3

G 1 TA 1 N − 1 2 1

H̃m 1 1 TA 1 -2 2m−N + 3

G̃ 1 1 TA 1−N -2 1

Ṽ adj 1 1 0 0 1

where m = 0, . . . , N − 2.

The global symmetry and the field content of the sec-
ond magnetic theory is the same as in Seiberg’s dual the-
ory with Nf = 4, but the gauge group is now SU(2N)
instead of SU(Nf − 2N):

SU(2N) SU(4) SU(4) U(1)2 U(1)R

q f f 1 1 − 1
2 (N − 2)

q̃ f 1 f -1 − 1
2 (N − 2)

Mk 1 f f 0 2k −N + 2

Ṽ adj 1 1 0 1

where k = 0, . . . , N − 1.

The most complicated is the third magnetic theory
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SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)R

q f f 1 0 -1 − 1
2 (N − 2)

q̃ f 1 f 0 1 − 1
2 (N − 2)

Mk 1 f f 0 0 2k −N + 2

Hm 1 TA 1 -1 2 2m−N + 3

G 1 TA 1 N − 1 2 1

H̃m 1 1 TA 1 -2 2m−N + 3

G̃ 1 1 TA 1−N -2 1

Ṽ adj 1 1 0 0 1

where k = 0, . . . , N − 1 and m = 0, . . . , N − 2. For N = 1
these three dualities are particular cases of the SP (2)
gauge group dualities considered in detail in [15].

B. SU(N) gauge group with Nf = N + 2

The electric part of the next set of dualities coincides
with the Seiberg theory with Gc = SU(N) for arbitrary
N and Nf = N + 2.

SU(N) SU(N + 2) SU(N + 2) U(1)B U(1)R

Q f f 1 1 2
N+2

Q̃ f 1 f -1 2
N+2

V adj 1 1 0 1

The dual theories are characterized by a rather compli-
cated structure of the flavor symmetry group SU(K) ×
SU(M) × U(1)1 × SU(K) × SU(M) × U(1)2 × U(1)B,
where M = N + 2 −K and K is an arbitrary integer in
the range K = 1, . . . , N + 1. The dual gauge group is
the same Gc = SU(N) (self-duality). The field content
is described in the table at the end of this section.

These dualities were derived in [2] (for N = 2, see
[15]) on the basis of symmetry transformations for elliptic
hypergeometric integrals established by Rains in [10] (one
of which was suggested earlier in [7]). Here we just stress
that they lie beyond the conformal window (3) for N > 3,
since the left-hand side inequality is violated in this case.
Surprisingly, for N = 3 we obtain a new duality lying
inside the conformal window.

SU(N) SU(K) SU(M) U(1)1 SU(K) SU(M) U(1)2 U(1)B U(1)R

q1 f f 1 K(K−2)
N −K +M 1 1 MK

N 1−M 2
N+2

q2 f 1 f −K(K−2)
N 1 1 −MK

N 1−K 2
N+2

q3 f 1 1 MK
N f 1 K(K−2)

N −K +M M − 1 2
N+2

q4 f 1 1 −MK
N 1 f −K(K−2)

N K − 1 2
N+2

X1 1 f 1 M 1 f −K 0 4
N+2

X2 1 1 f −K f 1 M 0 4
N+2

Y1 1 f f K −M 1 1 0 N 2N
N+2

Y2 1 1 1 0 f f K −M −N 2N
N+2

Ṽ adj 1 1 0 1 1 0 0 1

III. DUALITIES OUTSIDE THE CONFORMAL

WINDOW FOR SP (2N) GAUGE GROUP

We describe now dualities lying outside the conformal
window (4). The starting electric theory has the gauge
group Gc = SP (2N), 8 flavors and a matter field X
in the adjoint representation of Gc. As shown in [15],
this theory has many dual partners (one of which was
described earlier in [16]). The electric superconformal
index has the form

IE = κNΓ(t; p, q)N−1

∫

TN

∏

1≤i<j≤N

Γ(tz±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

×
N∏

j=1

∏8
k=1 Γ(tkz

±1
j ; p, q)

Γ(z±2
j ; p, q)

dzj
2πizj

, (7)

where |t|, |tk| < 1, t2N−2
∏8

k=1 tk = (pq)2 and

κN =
(p; p)N∞(q; q)N∞

2NN !
.

This integral has nice symmetry transformations de-
scribed by the Weyl group of the exceptional root system
E7 [10] (for N = 1 the key transformation was found in
[7]). The transformed integrals coincide with the super-
conformal indices of dual magnetic theories [15].
Now we restrict the value of the t-parameter to t =

√
pq

and analytically continue function (7) by replacing T to
a contour separating geometric sequences of integrand’s
poles converging to zero from their reciprocals. This
leads to the “decoupling” of the field X from the elec-
tric theory, so that the same index is generated by the
model

SP (2N) SU(8) U(1)R

Q f f −N−3
4

V adj 1 1
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To obtain the dual description, we set t =
√
pq in the

magnetic superconformal indices described in [15] and
reinterpret the resulting integrals as coming from differ-
ent dual theories, similar to the SU(2N) case described
above. The first magnetic theory has the following fields
content (note the change in the flavor group)

SP (2N) SU(4) SU(4) U(1)B U(1)R

q f f 1 −1 −N−3
4

q̃ f 1 f 1 −N−3
4

MJ 1 TA 1 2 J − N−3
2

M̃J 1 1 TA −2 J − N−3
2

Ṽ adj 1 1 0 1

where J = 0, . . . , N − 1.
The second magnetic theory is

SP (2N) SU(4) SU(4) U(1)B U(1)R

q f f 1 1 −N−3
4

q̃ f 1 f −1 −N−3
4

MJ 1 f f 0 J − N−3
2

Ṽ adj 1 1 0 1

And, finally, the third magnetic theory is

SP (2N) SU(8) U(1)R

q f f −N−3
4

MJ 1 TA J − N−3
2

Ṽ adj 1 1

The flavor symmetry here coincides with the electric one.

IV. CONCLUSION

For all dualities described in this paper we have
checked validity of the ’t Hooft anomaly matching con-
ditions and the Nf → Nf − 1 reductions. Equality of
the superconformal indices for theories in Sect. IIA is
not proven, but in the reduced case Nf = 3 these indices
are equal due to the integral identities established in [7].

Equality of indices in general case for theories of Sects.
IIB and III follows [2] from the identities proven rigor-
ously in [10]. Note also that all the models described in
our tables are asymptotically free and define interacting
conformal field theories at the infrared fixed point.

We conclude that the notion of conformal windows
should be used with care — it is applicable only to par-
ticular types of dualities. Our results raise a natural
question on classification of all 4D theories dual to the
original Seiberg “minimal” electric SQCD. It is necessary
to analyze various infrared physics implications following
from the dualities described above. In particular, this
concerns the structure of superpotentials (see, e.g., some
preliminary discussions in [17]). It would be interesting
to understand which properties of the superconformal in-
dices are responsible for the description of moduli spaces
and natural choices of the superpotentials. Equalities
of dual indices remain valid beyond the infrared fixed
points. This and other mathematical properties of the
corresponding relations raise the problem of establishing
the full physical content hidden in them.

For superconformal field theories (e.g., for N = 1
theories at the infrared fixed points) the dimension of
the scalar component of the gauge invariant chiral (and
antichiral) superfields are related to their R-charges as

∆ = 3R/2. For the meson field M = QQ̃ with Gc =

SU(N) the dimension is ∆[M ] = ∆[Q] + ∆[Q̃] = 3R =
3(1 − N/Nf ). The conventional superconformal alge-
bra wisdom on unitarity demands that ∆[M ] ≥ 1, or
Nf ≥ 3N/2, which is clearly broken in our theories for
N > 4 (for the theories in Sect. IIB the unitarity is
intact for N = 3, 4). Therefore one has to find physical
ways out of this obstacle either by modifying the infrared
dynamics or by other means.
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