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ABSTRACT

We investigate the thermodynamic stability of neutral black objects with (at least)

two angular momenta. We use the quasilocal formalism to compute the grand canonical

potential and show that the doubly spinning black ring is thermodynamically unstable. We

consider the thermodynamic instabilities of ultra-spinning black objects and point out a

subtle relation between the microcanonical and grand canonical ensembles. We also find

the location of the black string/membrane phases of doubly spinning black objects.
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1 Introduction

The physics of event horizons in higher-dimensional general relativity is an interesting area

of research not just for its intrinsic relevance to string theory. An investigation of black

hole solutions in higher dimensions is also important because it has revealed new intriguing

aspects.

It is clear by now that some of the remarkable properties of four-dimensional black

holes do not hold in general. A notorious example of particular importance concerns their

horizon topology. In four dimensions, the spherical topology (S2) is the only allowed horizon

topology (for asymptotically flat black holes). A related result is the ‘uniqueness theorem’,

which states that a vacuum black hole in four dimensions is characterized by its mass and

angular momentum and has no other independent characteristic (hair).

The spectrum of black objects is far richer in dimensions bigger than four (see, e.g., [1] for

a concise review) and, consequently, the notion of uniqueness is very much weaker. The most
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obvious indication supporting this point is provided by the existence of an asymptotically

flat solution describing a spinning black ring in five dimensions [2] (whose horizon topology

is S2 × S1).

The Euclidean approach was applied to the black ring thermodynamics for the first

time in [3]. Since the black ring does not have a real non-singular Euclidean section, the

‘quasi-Euclidean’ method [4] was adopted to analyze the black ring thermodynamics. In

this approach, the horizon is described by the ‘bolt’ in a complexified Euclidean geometry

(rather than a real one).1

It was also pointed out in [3] that the neutral black ring with one angular momentum

is unstable to angular fluctuations — a more detailed analysis can be found in [5, 6, 7].

A natural question one would like to answer is if a second angular momentum will change

the situation, in other words if a neutral doubly spinning black ring is thermodynamically

stable.

Understanding the thermodynamics of the doubly spinning black ring is important from

a different perspective. It was observed in [8] that, in dimensions greater than five, the

thermodynamics of the (ultra-)spinning black holes show a qualitative change in behaviour.

Even at a relatively low value of the angular momentum, there is a transition toward

a black membrane-like behaviour. This is due to the fact that the temperature has a

minimum: after the temperature reaches a minimum, it starts growing as expected for the

black membrane.2

In the ‘thin ring approximation’ (that resembles the ultra-spinning regime for black

holes), the radius of S1 is much larger than the radius of S2 and so the black ring is

approximated by a boosted black string (black 1-brane). Another interesting question we

would like to address in this paper is how the ultra-spinning regime of the black ring is

affected by adding the second angular momentum.

Remarkably, Pomeransky and Sen’kov managed to find the exact solution [11] for a

balanced (neutral) doubly spinning black ring. Some properties of the solution including

the structure of the phases (in the microcanonical ensemble) are discussed in [12]. A study

of its geodesics has been performed in [13] and a careful investigation of global properties

appeared recently in [14].

Within the quasilocal formalism [15] there exist all ingredients necessary to study in

detail the thermodynamics of the doubly spinning ring. Supplemented with counterterms

[16], the quasilocal formalism becomes a very powerful tool to study the thermodynamics of

black objects that are asymptotically flat (several concrete five-dimensional examples were

discussed in detail in [7, 17]).

For thin black ring solutions one can use the results for black strings to study the

thermodynamics. However, it was emphasized in [18] that the quasilocal stress tensor can

1The complex geometry is obtained by the usual analytic continuation of time coordinate, τ = it.
2Recently, it was understood [9] that it corresponds to a zero mode associated with the onset of the

Gregory-Laflamme instability [10].
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be used to study any general (thin or fat) black ring solution (even the unbalanced black

ring).

In this paper, we use the quasilocal formalism supplemented with counterterms (coun-

terterm method) to investigate the thermodynamic stability of a neutral doubly spinning

black ring. The second angular momentum changes, indeed, the situation in the sense that

all response functions can be now positive definite in some regions of the parameter space.3

Unlike the black ring with one angular momentum, the doubly spinning ring is stable

against perturbations in the angular velocity in some specific region of the parameter space.

However, a careful analysis of all response functions that characterize the system reveals

that the doubly spinning black ring is thermodynamically unstable in the grand canonical

ensemble. That is, there is no overlap region in the parameter space in which all response

functions are positive definite.

We also present a careful analysis of the ultra-spinning regime for both, the black hole

and black ring. We show that there is a similar ultra-spinning limit for the black ring.

However, there is a key difference in this case. That is, the temperature does not have a

minimum but rather there is a ‘turning point’, which is responsible for the (boosted) black

membrane behaviour.

Interestingly enough, we will see that even after adding the second angular momentum

the ring can have a membrane-like behaviour. However, for large enough values of the

second angular momentum the ‘membrane phase’ will disappear.

The remainder of this paper is organized as follows: we start in Section 2 with a brief

review of the counterterm method for asymptotically flat spacetimes. We then compute the

stress tensor and the corresponding asymptotic charges for black objects with two angular

momenta: Myers-Perry black hole, black ring, and black branes. In Section 3, we present

an analysis of the thermodynamic stability of the doubly spinning ring. We compute the

thermodynamic action and check the quantum statistical relation. We also analyze in

great detail the response functions. In Section 4, we investigate the black string/membrane

phases of (doubly) spinning black objects. Finally, we conclude with a discussion of our

results. In Appendix A we present the expressions of angular velocities and temperature

for a general metric with two angular momenta. Appendix B contains some general aspects

of black holes thermodynamics, the local stability conditions, and concrete expressions for

some of the response functions used in Section 2.

2 Stress tensor and conserved charges

In this section we apply the counterterm method to doubly spinning five-dimensional vac-

uum solutions of Einstein gravity. We explicitly show how to compute the boundary stress

3For a black ring with one angular momentum, the ‘isothermal compressibility’ (moment of inertia) is

always negative.
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tensor and the conserved charges for Myers-Perry black hole, doubly spinning black ring,

and doubly spinning black branes.

2.1 Quasilocal formalism and conserved charges

To begin our considerations on thermodynamics of doubly spinning black objects in five

dimensions, we recall the description of quasilocal formalism [15] supplemented with coun-

terterms.

To define the conserved charges we use the divergence-free boundary stress tensor pro-

posed in [3]4:

τij ≡
2

√

|h|
δI

δhij
=

1

8πG5

(

Kij − hijK −Ψ(Rij −Rhij)− hij�Ψ +Ψ;ij

)

(2.1)

where Ψ =
√
3/
√
2R, hij is the induced boundary metric, and Rij is its Ricci scalar.

Here, I is the renormalized action that includes counterterms,

I =
1

16πG5

∫

M

R
√
−g d5x+ ǫ

8πG5

∫

∂M

(

K −
√

3R
2

)

√

|h| d4x (2.2)

K is the extrinsic curvature of ∂M and ǫ = +1(−1) if ∂M is timelike (spacelike).

The boundary metric can be written locally in ADM-like form

hijdx
idxj = −N2 dt2 + σab (dy

a +Na dt)(dyb +N b dt) (2.3)

where N and Na are the lapse function and the shift vector respectively and {ya} are the

intrinsic coordinates on a (closed) hypersurface Σ.

If the boundary geometry has an isometry generated by a Killing vector ξi, a conserved

charge

Qξ =

∮

Σ

d3y
√
σniτij ξ

j (2.4)

can be associated with the hypersurface Σ (with normal ni).

2.2 Doubly spinning solutions

2.2.1 Black hole

The Einstein equations in higher dimensions have spinning black hole solutions [22]. In five

dimensions, the Myers-Perry black hole in Boyer-Lindquist type coordinates is

ds2BH = −dt2 + Σ

(

r2

∆
dr2 + dθ2

)

+ (r2 + a2) sin2 θ dφ2 + (r2 + b2) cos2 θ dψ2

+
m

Σ

(

dt− a sin2 θ dφ− b cos2 θ dψ
)2

(2.5)

4A rigorous justification and more details about this proposal can be found in [19, 20, 21].

4



where

Σ = r2 + a2 cos2 θ + b2 sin2 θ, ∆ = (r2 + a2)(r2 + b2)−mr2 (2.6)

and m is a parameter related to the physical mass of the black hole, while the parameters

a and b are associated with its two independent angular momenta. This metric depends

only on two coordinates, 0 < r < ∞ and 0 ≤ θ ≤ π/2, and it is independent of time,

−∞ < t <∞, and the azimuthal angles, 0 < φ, ψ < 2π.

The event horizon of the black hole can be computed by using (A.5), which implies

∆ = 0.5 The largest root of this equation gives the radius of the black hole’s outer event

horizon

r2h =
1

2

(

m− a2 − b2 +
√

(m− a2 − b2)2 − 4 a2 b2
)

(2.7)

Notice that the horizon exists if and only if

a2 + b2 + 2|a b| ≤ m (2.8)

so that the condition m = a2 + b2 + 2|a b| or, equivalently, r2h = |a b| defines the extremal

horizon of a five dimensional black hole (when one angular momentum vanishes, the horizon

area goes to zero in the extremal limit). Otherwise, the metric describes a naked singularity.

In the asymptotic limit, r → ∞, the metric (2.5) approaches Minkowski space

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2) (2.9)

We use the expression of black hole metric in Boyer-Lindquist coordinates to compute the

boundary stress tensor and we obtain the following non-vanishing components:

τtt =
1

8πG5

(

−3

2
m

1

r3
− 5

3
(a2 − b2)

cos 2θ

r3
+O(1/r5)

)

,

τtφ =
1

8πG5

(

−2 am
sin2 θ

r3
+O(1/r5)

)

,

τtψ =
1

8πG5

(

−2 bm
cos2 θ

r3
+O(1/r5)

)

,

τθθ =
1

8πG5

(

2

3

(

a2 − b2
) cos 2θ

r
+O(1/r3)

)

, (2.10)

τφφ =
1

8πG5

(

2

3

(

a2 − b2
) (−1 + 2 cos 2θ) sin2 θ

r
+O(1/r3)

)

,

τψψ =
1

8πG5

(

2

3

(

a2 − b2
) (1 + 2 cos 2θ) cos2 θ

r
+O(1/r3)

)

,

τφψ =
1

8πG5

(

−4 a bm
cos2 θ sin2 θ

r3
+O(1/r5)

)

5Since r is playing the role of a radial coordinate in this coordinate system, the event horizon is also the

null surface determined by the equation grr = 0 .
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This stress tensor is covariantly conserved with respect to the boundary metric (2.9). We

also notice that, for equal angular momenta, the diagonal ‘angular’ components of the stress

tensor vanish — this is intuitively expected due to the enhanced symmetry.

Using the definition (2.4), it is straightforwardly to obtain the conserved charges asso-

ciated with the surface Σ as

M =

∮

Σ

d3y
√
σni τij ξ

j
t , Jφ =

∮

Σ

d3y
√
σni τij ξ

j
φ , Jψ =

∮

Σ

d3y
√
σni τij ξ

j
ψ

where the normalized Killing vectors associated with the mass and angular momenta are

ξt = ∂t, ξφ = ∂φ, and ξψ = ∂ψ respectively. We find

M =
3 πm

8G5
, Jφ =

πma

4G5
, Jψ =

πmb

4G5
(2.11)

which is in perfect agreement with the ADM calculation.

2.2.2 Black ring

A black ring is a five-dimensional black hole with an event horizon of topology S1 × S2

and the metric was presented in [2] — the solution of Emparan and Reall has one angular

momentum. In five dimensions, a more general solution (with two angular momenta) for a

black ring was presented by Pomeransky and Sen’kov [11]. We provide here a brief account

of the doubly spinning black ring solution and compute the boundary stress tensor and the

conserved charges.

We will use the solution in the form presented in [11]. The metric depends just on the

coordinates x and y defined within the following intervals −1 ≤ x ≤ 1 and −∞ < y < −1.

Notice that x is like an angular coordinate — this observation will be useful when we will

define new coordinates that make asymptotic flatness clear.

The metric has a coordinate singularity where gyy diverges. The event horizon of the

doubly spinning black ring is located at the smallest absolute value of 1 + λ y + ν y2 = 0,

namely

yh =
−λ+

√
λ2 − 4ν

2ν
(2.12)

For a regular black ring solution, the parameters ν and λ are constrained to satisfy [11]:

0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν (2.13)

In the limit ν → 0 the black ring with one angular momentum (Jφ) is recovered (Jψ is the

angular momentum on S2). The limit λ→ 2
√
ν was carefully studied in [12] and shown to

correspond to regular extremal black rings.

We use a coordinate transformation similar to the one in [12]:

x = −1 + 4k2 α2 cos
2 θ

r2
, y = −1− 4k2 α2 sin

2 θ

r2
, α =

√

1 + ν − λ

1− ν
(2.14)
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In these coordinates ∂t, ∂φ, and ∂ψ are Killing vectors and the asymptotic metric is the

same as (2.9).

The boundary stress tensor in these new coordinates is

τtt =
1

8πG5

(

− 12k2λ

(1 + ν − λ)

1

r3
− 8 k2F1[ν, λ]

3(1 + ν − λ)(1− ν)2
cos 2θ

r3
+O(1/r5)

)

,

τtφ =
1

8πG5

(

16k3λ (1 + λ− 6ν + λν + ν2)
√

(1 + ν)2 − λ2

(1 + ν − λ)2(1− ν)2
sin2 θ

r3
+O(1/r5)

)

,

τtψ =
1

8πG5





32k3λ
√

ν
[

(1 + ν)2 − λ2
]

(1 + ν − λ)(1− ν)2
cos2 θ

r3
+O(1/r5)



 ,

τθθ =
1

8πG5

(

2k2F2[ν, λ]

3(1 + ν − λ)(1− ν)2
cos 2θ

r
+O(1/r3)

)

, (2.15)

τφφ =
1

8πG5

(

k2 (−F3[ν, λ] + F4[ν, λ] cos 2θ)

3(1 + ν − λ)(1− ν)2
sin2 θ

r
+O(1/r3)

)

,

τψψ =
1

8πG5

(

k2 (F3[ν, λ] + F4[ν, λ] cos 2θ)

3(1 + ν − λ)(1− ν)2
cos2 θ

r
−O(1/r3)

)

,

τφψ =
1

8πG5

(

128k4λ
√
ν (4λν − (λ2 + (1− ν)2)(1 + ν))

(1 + ν − λ)(1− ν)4
cos2 θ sin2 θ

r3
+O(1/r5)

)

where

F1[ν, λ] = 1− 5ν − ν2 + 5ν3 + λ2(3 + 7ν) + λ(1− 14ν − 7ν2) ,

F2[ν, λ] = 1− 11ν − ν2 + 11ν3 + λ2(3 + 13ν) + 4λ(1− 5ν − 4ν2) ,

F3[ν, λ] = 5− 7ν − 5ν2 + 7ν3 + λ2(15 + 17ν)− 4λ(1 + 13ν + 2ν2) ,

F4[ν, λ] = 7− 29ν − 7ν2 + 29ν3 + λ2(21 + 43ν) + λ(4− 92ν − 40ν2)

As in the case of doubly spinning black hole, this stress tensor is covariantly conserved

with respect to the boundary metric (2.9). However, since for the doubly spinning black

ring the angular momenta can not be equal, there can not be a similar enhanced symmetry

in the angular part as in the black hole case.

By plugging the expressions of the boundary stress-energy components (2.15) in (2.4)

we find the following expressions for the conserved charges:

M =
3π k2

G5

λ

1 + ν − λ
, Jψ =

4π k3

G5

λ
√

ν
[

(1 + ν)2 − λ2
]

(1 + ν − λ)(1− ν)2
, (2.16)

Jφ =
2π k3

G5

λ (1 + λ− 6ν + ν λ+ ν2)
√

(1 + ν)2 − λ2

(1 + ν − λ)2(1− ν)2
(2.17)

As expected, the charges computed by using the quasilocal formalism recover correctly

the ADM results [11].
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In principle, one can obtain a black hole and a black ring with the same conserved

charges. However, an asymptotic observer can not distinguish between a black hole and

a black ring just by computing the (conserved) asymptotic charges. We would like to

emphasize that it is expected that the quasilocal stress tensor (the subleading terms) should

encode the information necessary to distinguish between black objects with different horizon

topologies.

2.2.3 Black brane

Here we would like to apply the quasilocal formalism to doubly spinning black branes. The

black brane (BB) metric we are interested in is obtained by adding flat directions to a

5-dimensional black hole with two angular momenta. Therefore, the metric is

ds2BB = ds2BH +
D−5
∑

i=1

dx2i (2.18)

where ds2BH is the black hole metric defined in (2.5).

Since the number of dimensions and the topology are changed, one expects changes with

respect to the former discussion. For example, the form of the counterterm leading to a

finite actions may be different when the number of dimensions is increased. However, in

this particular case, what is important is the ‘seed’ 5-dimensional solution to which we add

the flat directions. Thus, the form of the counterterm does not change but the stress tensor

will have new components.

A similar computation as for the doubly spinning black hole reveals that the stress tensor

of the BB is the one in (2.10) supplemented with the components in the new directions:

τxixi =
1

8πG5

(

−3

2
m

1

r3
− 5

3
(a2 − b2)

cos 2θ

r3
+O(1/r5)

)

(2.19)

This result resembles the tension (per unit length) of the black string.

3 Thermodynamic instability for black ring

In this section, we discuss the thermodynamics of a doubly spinning ring in the grand

canonical ensemble.

So far, we have computed the conserved charges of neutral spinning black objects with

two angular momenta by using the quasilocal formalism. However, the quasilocal formalism

is a very powerful tool for understanding the thermodynamics in more detail. In particular,

one can compute the action and, therefore, the thermodynamic potential.

In what follows, we present a detailed analysis of thermodynamic stability of the doubly

spinning black ring — an analysis of the thermodynamic stability of Myers-Perry black hole

with two angular momenta can be found in [6].
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Let us start by computing the angular velocities and the temperature for this solution.

From (A.6) we obtain the following expressions for the angular velocities:

Ωψ =
λ(1 + ν)− (1− ν)

√
λ2 − 4ν

4λ
√
νk

√

1 + ν − λ

1 + ν + λ
, Ωφ =

1

2k

√

1 + ν − λ

1 + ν + λ
(3.1)

The area of the event horizon and the temperature (A.7) are

AH =
32π2k3 λ(1 + λ+ ν)

(1− ν)2(y−1
h − yh)

, T =

√
λ2 − 4ν(1− ν)(y−1

h − yh)

8πk λ(1 + λ+ ν)
(3.2)

Note that yh =
−λ+

√
λ2−4ν

2ν
is the biggest root of (A.5) which corresponds to the outer event

horizon — at this point, it might be useful to emphasize again that −∞ < y < −1.

The starting point of the Euclidean approach to black hole thermodynamics is the

partition function [23]6

Z(β) =

∫

d[g, φ]e−I[g,φ] (3.3)

where φ is a collective notation for the matter fields, d[g, φ] is the measure, and I[g, φ] is

the Euclidean classical action. The gravitational partition function is defined by a sum over

all smooth geometries (including black holes) that are periodic with period β = T−1 in the

same class of boundary conditions (e.g., asymptotically flat spacetimes).

For our purpose it is enough to consider the saddle point approximation. The grand

canonical partition function is then Z = Tre−β(H−ΩaJa) ≃ e−Icl (here we are interested in

black objects with two angular momenta), where Icl is the classical action. The saddle

point is usually reffered to as a gravitational instanton.7

The thermodynamic (effective) potential associated to grand canonical ensemble is

G[T,Ωa] ≡
Icl
β

=M − TS − Ωa Ja (3.4)

On the Euclidean section, the topology near the horizon is modified8 and one has to

deal with manifolds with conical singularities. It was shown in [24, 25] that the conical

defect has a contribution to the curvature and, consequently, the path integral is rescaled

by eS. However, this can be intuitively interpreted as a consequence of a trace over the

macroscopically indistinguishable microstates.

Let us now compute the action for the doubly spinning black ring. Since the Ricci scalar

vanishes on-shell, the only contribution to the action is coming from the surface terms. To

6It should be understood as a low energy effective theory rather than a proper theory of quantum gravity.
7A quantum field can be treated as a small perturbation about the gravitational instanton. The next

order contribution, which gives the one loop correction, includes also the thermal radiation outside the

black hole.
8The origin in the Euclidean spacetime translates to the horizon surface in the Lorentzian spacetime.

The Euclidean section can be understood as an effective description where the microstates can not be

distinguished.
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evaluate these terms, it is convenient to use the (r, θ) coordinate system instead of the (x, y)

coordinates — the reason is that the normal to the boundary has just one non-vanishing

component. We find

lim
r→∞

√

|h|
(

√

3

2
R−K

)

=
2k2 (λ(1− ν)− F5[ν, λ] cos 2θ) sin 2θ

(1 + ν − λ)(1− ν)
+O(1/r) (3.5)

where F5[ν, λ] = 1 + 3λ2 + 6ν + 5ν2 − 4λ− 8λν. The expression for the total action is

Icl = β
πk2

G5

λ

(1 + ν − λ)
(3.6)

and satisfies (3.4) (with β = T−1), which is the quantum statistical relation for the doubly

spinning black ring. This can also be regarded as a non-trivial check that the entropy of

this solution is, indeed, one quarter of the event horizon area.

We have checked that the usual thermodynamic relations

S = −
(

∂G

∂T

)

Ωa

, Ja = −
(

∂G

∂Ωa

)

T,Ωb

(3.7)

are satisfied and so the Gibbs potential G[T,Ωφ,Ωψ] is indeed the Legendre transform of

the energy M [S, Jφ, Jψ] with respect to S, Jφ, and Jψ.

We want to also point out that, in the light of the new developments in understanding

the balance condition for gravity solutions [18], the form of quantum statistical relation

hints to the fact that this solution is balanced. Indeed, our results are in perfect agreement

with the recent detailed analysis of the global properties of the doubly spinning black ring

[14].

Now, we are ready to discuss the thermodynamic stability in the grand canonical ensem-

ble — in Appendix B we summarize the thermal stability conditions and present explicit

expressions for some response functions we are interested in. We analyze in detail the

response functions that signal the (in)stability of the black ring against fluctuations.

We consider first the specific heat at constant angular velocities

CΩ ≡ T

(

∂S

∂T

)

Ωφ,Ωψ

(3.8)

The analytic form of this quantity is too complicated to be written down here. Instead, we

show on the left hand side in Fig. 1 a scatter region in the parameter space of the doubly

spinning black ring where this heat capacity CΩ is negative (gray – 10,000 points). Note

also that the parameters in the solution (2.13) are constrained and represented as a dashed

line for λ = 1 + ν and solid line for the extremal black ring with λ = 2
√
ν.

In a similar way, we explore the region where the specific heat at constant angular

momentum

CJ ≡ T

(

∂S

∂T

)

Jφ,Jψ

(3.9)
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Figure 1: Scatter plots in parameter phase space (ν, λ) for the doubly spinning black ring. The

plot on the left shows the regions (10,000 points) where the heat capacities are negative, CΩ < 0

(gray) and CJ < 0 (black). The regions where the compressibility ǫφφ (gray) and the det[ǫ] (black)

are negative cover the entire parameter space (plot on the right) implying the local thermal

instability of the doubly spinning black ring. The region in the parameter space is bounded:

0 ≤ ν < 1 and λ by the functions 1+ν and 2
√
ν, shown as the dashed and solid lines respectively.

is negative. The region (in black) where CJ < 0 is shown in the scatter plot on the left of

Fig. 1.

We observe a region in the parameter space of the doubly spinning black hole where both

specific heats, CΩ and CJ , can be positive simultaneously. However, this condition is not

sufficient to draw the conclusion of thermodynamic stability: one should also investigate

the matrix of ‘isothermal moment of inertia’.

These response functions are defined as

ǫab ≡
(

∂Ja
∂Ωb

)

T,Ωa 6=b

(3.10)

We observe in Fig. 1 that the spectrum of the matrix of isothermal moment of inertia,

spec[ǫab], is nowhere positive definite in the parameter space.

Since there is no overlap region in which all the response functions of interest are positive

definite, we conclude that the doubly spinning black ring is unstable in the grand canonical

ensemble.

4 Instabilities from thermodynamics

Many known stationary black holes in higher dimensions present a black string or, more

general, black brane phase — we will refer to it as the ‘membrane phase’. That is, as the

angular momenta are sufficiently increased, the behaviour of some black holes and black

rings changes to that of extended black branes and strings (the utra-spinning regime).

In Section 4.1, we deal with the ultra-spinning black holes. From the study of the Gibbs

potential’s hessian, we show the existence and find the locus of the transition points to the
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membrane phase. We also argue that there is a subtle relation between the microcanonical

and grand canonical ensembles that may be at the basis of some of the results for ultra-

spinning black holes discussed recently in [9].

The analysis can be extended to (doubly) spinning black rings. These results are pre-

sented in Section 4.2.

4.1 Ultra-spinning black holes

Due to the qualitative changing behaviour of black holes as the dimensions are increased,

the authors of [8] have argued that the ultra-spinning black holes — those in D ≥ 6

dimensions that can have arbitrary large angular momentum per unit mass [22] — become

unstable. The transition of these black holes, from behaving like a spherical black hole to

behaving like a black membrane as the spin grows, was established to be at the minimun

of the temperature. From that point onwards, the temperature increases in a similar way

as for the black brane temperature.

The minimum of the temperature where the behaviour of the singly spinning black hole

changes is determined as [8]
a2

r2h
=
D − 3

D − 5
(4.1)

This result was also obtained by using a different method, namely finding the divergences

of the ‘Ruppeiner curvature’ [26]. It was shown in [27] that, for a singly spinning Myers-

Perry black hole, this curvature9 blows-up exactly at the value (4.1) signalling a thermal

instability of the system.

A qualitative understanding of this fact is related to the observation that, as the spin

becomes large, the event horizon spreads out in the plane of rotation: it becomes a higher

dimensional ‘pancake’ approaching the geometry of a black brane.

The existence of the ultra-spinning limit resembling black branes has a remarkable

consequence. Black branes were shown to be classically unstable [10] so that the ultra-

spinning black holes would inherit the Gregory-Laflamme instability. The threshold of the

classical instabilities and the connection to the thermal instability as conjectured by [28]

(see, also, [29]) requires a linearized analysis of the perturbations of the black hole solutions.

However, the transition to a membrane-like phase of the rapidly spinning black holes

can be established from the study of the thermodynamics of the system. The existence and

location of the threshold of this regime is signalled by the minimum of the temperature and

the maximum angular velocity as functions of the angular momentum.

It was observed in [9] that, for ultra-spinning black holes, this is in tight correspondence

with a vanishing eigenvalue of the Hessian of the Gibbs potential. A complete thermody-

namic analysis, though, should be based on the full hessian of the thermodynamic potential

rather than only a study of the determinant.10 We will see in the next subsection that the

9The Ruppeiner curvature is the scalar curvature of the Hessian matrix of the entropy.
10A spinodal is defined as a line separating the regions of stability and instability of a homogenous
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mebrane phase of a doubly spinning ring is not signalled by a zero-eigenvalue of the Gibbs

potential’s hessian.

For ultra-spinning black holes, there is a direct relation between (some response functions

in) the microcanonical and grand canonical ensembles.11 To see that, let us compare the

expressions of two (particular) response functions in these two ensembles:

(

∂2S

∂J2

)

M

= − 1

T

(

∂Ω

∂J

)

M

+
Ω

T 2

(

∂T

∂J

)

M

and

(

∂2G

∂Ω2

)

T

= −
(

∂J

∂Ω

)

T

(4.2)

We have checked that in the particular case of the singly spinning black hole, indeed,

these two response functions are inverse proportional at the particular point where the

temperature has a minimum. Therefore, an inflexion point in the microcanonical ensemble

corresponds to a divergence of the corresponding response function in the grand canonical

ensemble. This may well be an explanation for the results obtained in [9]. Moreover, this

point should not be considered as a sign for an instability or a new branch but a transition

to an infinitesimally nearby solution along the same family of solutions. The numerical

evidence of [9] supports this connection with the zero-mode perturbation of the solution.

We now examine the situation for a more general family of ultra-spinning Myers-Perry

black holes with multiple spin parameters, ai, where i = 1, 2, ..., N and N = [(D − 1)/2].

The black hole is characterized by the mass parameter µ and the horizon radius rh (the

largest root of)

µ =
1

r1+ǫh

N
∏

i=1

(r2h + a2i ) , (4.3)

by which we can express the thermodynamics

M =
ΩD−2

16πGD

(D − 2)µ, Ji =
ΩD−2

16πGD

ai µ, Ωi =
ai

r2h + a2i
,

AH = ΩD−2 µ rh, T =
1

2πrh

(

r2h

N
∑

i=1

1

r2h + a2i
− 1 + ǫ

2

)

, (4.4)

where ǫ = mod2D. A sufficient, but not necessary, condition for the existence of ultra-

spinning black holes was given in [8]. In even(odd) dimensions at least one(two) of the

spins should be much smaller than the rest. The ultra-spinning regime is obtained in the

limit

0 ≤ a1, a2, ..., ak << ak+1, ..., aN → ∞ (4.5)

where N − 1 ≥ k ≥ 1 + ǫ. The generic limiting black brane metric whether static, with all

finite angular momenta a1, .., ak vanishing, or spinning, with some a1, .., ak non-vanishing,

is the product SD−2(N−k+1) ×R2(N−k).

system. It is important to emphasize that all spinodals are zero-determinant lines, but in general not all

zero-determinant lines are spinodal.
11Different ensembles correspond to different physical conditions and so, in more general cases, one does

not expect such a relation.
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Our focus will be on the case in which the black hole has at least two large spins and

we set the remaining angular momenta to zero. When the angular momenta are equal,

Jk+1 = ... = JN = J , the Ruppeiner curvature scalar blows up at12

a2

r2h
=

D − 3

2k − 1− ǫ
. (4.6)

According with the arguments in [26], this signals a thermodynamic instability. However,

the expected new phase should correspond to the black membrane phase of ultra-spinning

black holes and not to a new branch of solutions.

This is further supported by examining the eigenvalues of the Hessian of the Gibbs

potential. Indeed, we find that the divergences of the Ruppeiner curvature pinpoint the

zero of the determinant of the Gibbs potential’s hessian.

Also, by studying the temperature

T =
(D − 3)

(

1 + n
(D−3)

4J2

S2

)

4S
1

D−2

(

1 + 4J2

S2

)
D−1+n
2(D−2)

, n = 2k − 1− ǫ (4.7)

we find that the temperature has a minimum at exactly (4.6), while the angular velocity Ω

reaches its maximum value.

For ultra-spinning black holes, similar to the singly spinning situation discussed in [8],

once this minimum is reached the temperature increases and the angular velocity decreases

signalling a transition to a membrane phase.

Another case of interest is the ultra-spinning black holes that resemble spinning black

branes, when some of the slower spins are non-zero a1, ..., ak 6= 0. It is not our goal to make

a detailed analysis of this case here. Nevertheless, in all the cases where the non-vanishing

spins are set equal, we find divergences of the Ruppeiner scalar curvature which could help

to detect the threshold of their membrane phase.

4.2 Membrane phase of black rings

Other solutions, e.g. the black ring with one angular momentum, also exhibit an ultra-

spinning behaviour. The black ring, which is characterized by the radii r0 and R of the

spheres SD−3 and S1, respectively, becomes thin in this limit (when r0 << R).13

Since the final expressions for the response functions are very complicated for the doubly

spinning ring (see Appendix B), we prefer to present the ‘conjugacy diagram’ of the angular

velocity versus the angular momentum and the plot of the temperature as a function of the

angular momentum, both for a fixed mass.

12Note that a
2

r2
h

= 4J
2

S2 and in the particular case when k = kmax our results agree with those of [27].
13This regime was the starting point to finding perturbatively the higher dimensional cousins of the black

rings. Moreover, a generalization of this construction to black branes led to the construction of blackfolds

[30, 31].
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Figure 2: Plots of the temperature (left hand side) and angular velocity (right hand side) as

functions of the angular momentum jφ, for a fixed mass, for different black objects. These include

the singly spinning Myers-Perry black holes in five dimensions of space-time (black dashed line)

and its seven dimensional cousin (solid line). The singly (dark gray) and doubly spinning black

ring (light gray) for different values of angular momenta (right towards left) jψ = 0.05, 0.1, 0.2 on

the S2, are also shown here. The five-dimensional doubly spinning black holes are respresented

by dashed light gray lines.

The dimensionless expressions for the temperature t, the spin j, and the angular velocity

ω are

tD−3 = ctGMTD−3 ωD−3 = cω GMΩD−3 , jD−3 = cj
JD−3

GMD−2
(4.8)

where the numerical constants are

ct =
2

(D − 2)

(4π)D−3

ΩD−3

(

D − 3

D − 4

)
D−3

2

, cω =
16

(D − 2)

(D − 3)
D−3

2

ΩD−3
, cj =

ΩD−3

2D+1

(D − 2)D−2

(D − 3)
D−3

2

(4.9)

For the singly spinning black ring, an analysis of the temperature as a function of the

angular momentum was presented in [32] — a similar discussion in Anti-de Sitter spacetime

can be found in [33].

In this case the temperature does not have a minimum, but there exists a turning point

(see Fig. 2). In our analysis, the turning point (I) for the black ring plays a similar role

as the minimum of the temperature for the black hole. That is, it signals a change in the

behaviour of the black ring. In fact, it is the starting point of the ultra-spinning regime

where the black ring can be approximated by a black string.

Using the Poincaré (’turning point’) method, this special point was carefully studied

in [32]. In particular, they found a divergence of the Ruppeiner curvature. In the conju-

gacy diagram there is also a turning point (I) at the same minimum value of the angular

momentum jφ.

The question is then if there still is a relation between the microcanonical and grand

canonical ensembles in this case. We have explicitly checked, using the results of [7], that

one of the eigenvalues of the hessian of the Gibbs potential is zero at this specific point
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I (while the second eigenvalue never changes its sign). Therefore we conclude that the

turning point is the onset of the ultra-spinning black string phase.

A far more richer structure is found for the doubly spinning black ring for which the

angular momentum on S2 is bounded as jψ ∈ [0, 1/4]. In this case, for a fixed value of the

mass and jψ in the range of 0 ≤ jφ ≤ 1/5, there also exist turning points signalling the

onset of the black membrane phase.

In the plot of the temperature as a function of the angular momentum jφ, there is a

turning point that corresponds to the minimum value of the S1 angular momentum. In

the conjugacy diagram ω vs. j, the minimum angular momentum is also a turning point.

We would like to emphasize that this point does not correspond to a zero-eigenvalue of the

Gibbs potential’s hessian.

The situation is similar, to some extent, to what we found before for the singly spinning

black ring but there also are some important differences. Let us now discuss the main

differences between the singly and doubly spinning black rings.

First, the angular momentum of S2 is bounded and for a specific jψ the black ring can

always be extremal (in the limit λ→ 2
√
ν as shown in [12]).

For a large enough S1 angular momentum, the temperature of the black ring (in its

membrane phase) increases while the area of the event horizon decreases up to a point

where the spin-spin interaction is large enough making a turn to abruptly become extremal

(zero temperature). This is the maximum critical value labeled III in Fig.2. Therefore,

the black membrane phase exists between points I and III.

Second, the cusps in the phase diagram (area vs. the S1 angular momentum) of the

doubly spinning black ring disappear for 1/5 < jψ ≤ 1/4 [12]. In other words, there is

no fat black ring branch and so the fat black rings have no black membrane phase. Such

solutions would never be captured with long distance effective approaches [30, 31].

In summary, we have found that the zero eigenvalues of the hessian of the Gibbs potential

can also be turning points (with tangents of infinite slope) and not just critical points as

for the Myers-Perry black holes. For certain values of the angular momenta, the doubly

spinning black ring has no membrane phase. Therefore, these particular solutions with

jψ > 1/5 fall into the same category as other black holes with no membrane phase as the

four dimensional Kerr black hole and the five dimensional Myers-Perry black hole.

5 Discussion

In this paper we have analyzed in detail the thermodynamic stability of neutral doubly

spinning black objects.

We have proved that the doubly spinning black ring is thermodynamically unstable.

That is, there is no region in the parameter space in which all response functions are
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positive definite.

We have provided an explanation of why the microcanonical and grand canonical en-

sembles for ultra-spinning black holes are related in a very special way. This argument is

not generally valid and we will comment in more detail on the significance of these results

in the last part of this section.

We have also identified the onset of membrane phase of different doubly spinning black

objects. There at least one of the eigenvalues of the Hessian of the Gibbs potential is zero.

Let us start with a discussion on the doubly spinning black ring. An analysis of this

solution in the microcanonical ensemble was presented in [12]. In general, for black holes,

the entropy is used to obtain the phase diagrams in the microcanonical ensemble while the

mass/energy is kept fixed. However, within general relativity it makes more sense to use

the total energy instead of the entropy. The reason is that this would require appropriate

boundary conditions.

We have presented a careful study of doubly spinning black ring thermodynamics in the

grand canonical ensemble. We have used the counterterm method to compute the action

and so the grand thermodynamic potential (which is a Legendre transform of the energy).

Since the concrete expressions of the response functions are complicated, we have plotted

the regions in the parameter space where they are positive definite.

It is well known that Schwarzschild black hole has a negative heat capacity, which means

that the thermodynamic ensemble would be dominated by diffuse radiation states rather

than black holes states. In other words, it is favorable for the black hole to decay away and

so pure thermal radiation is a local equilibrium state.

When adding angular momentum the situation is changing and the heat capacity can

become positive for large enough angular momentum. However, this condition is not enough

to conclude that the system is thermodynamically stable. The stability also implies that

when angular momentum is added to the system the angular velocity goes up.

For a black ring with one angular momentum the heat capacity can be positive definite

but the momentum of inertia is always negative. Therefore, the singly spinning black ring

is thermodynamically unstable.

As in the case of one angular momentum, the heat capacity of a doubly spinning black

ring can be positive in some region of the parameter space. However, there is a key difference

when the second angular momentum is turned on. That is, the component of the momentum

of inertia associated to S1 of the black ring can become positive — this is explicitly shown

in the Figure 2.

Since there are two angular momenta one should also investigate the effect of coupled

‘angular’ inhomogeneities. A careful study of the determinant of the momentum of iner-

tia matrix shows that there is no overlap region in the parameter space with the desired

properties and so the doubly spinning black ring is also thermodynamically unstable.

We would like now to discuss in more detail some of the results for ultraspinning black
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Figure 3: Plot of the response function ǫφφ as a function of λ. The gray curve corresponds to the

compressibility of the singly spinning black ring, namely ν = 0. As the angular momentum along

the S2 is increased (dashed line left towards right) the isothermal moment of inertia for different

values of ν = 0.15, 0.3, 0.42, 0.48, 0.53 changes and becomes positive for values of ν > 0.46690042

and λ > 1.40685 (shaded gray region).

holes presented in Section 4. In Fig. 4, we show the points (A,B) in the grand canonical

ensemble that correspond to inflexion points (A,B) in the microcanonical ensemble. This

can be quantitatively understood by comparing the (particular) response functions in (4.2)

at a very special point in the parameter space (where the temperature has a minimum).

However, we have explained that this argument applies just in this particular case, not

in general. A counterexample is the 5-dimensional black hole with one angular momentum.

In this case there is no relation between ensembles in the sense that there is no special

corresponding point (where the response function is divergent or zero) in the microcanonical

ensemble which corresponds to the inflexion point (C) in the grand canonical ensemble.

Moreover we have checked and there are no points where an eigenvalue of the Hessian

of the Gibbs potential vanishes. Therefore, it should not be considered as a sign for a

membrane phase.

It would be interesting to see if this inflexion point in the grand canonical ensemble is

related in any way to the dynamical stability.

One can also consider the ultra-spinning black holes with some of the finite angular

momenta non-zero. In odd(even) spacetime dimensions, the metric of an ultra-spinning

black hole with all but two(one) of the spins finite and non-zero will reduce to that of a

spinning black brane.

As we have shown in Section 2, the counterterm method can also be applied to spinning

black branes and the results are similar with the ones for the ‘seed’ spinning black hole

solution. We have computed the renormalized action to find the Gibbs potential and we

expect similar thermal instabilities as for the corresponding black holes.
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Figure 4: The microcanonical phase diagram - entropy, s, as a function of the angular momentum,

j - for fixed mass (on the left) of the singly spinning Myers-Perry black hole in D = 5, 6, 10

dimensions of space time (black, gray and lightgray lines respectively). The grand canonical phase

diagram (on the right) - Gibbs potential, g, as a function of the angular velocity, ω - for fixed

temperature of the black hole. The points A,B correspond to a/rh =
√
3,
√

7
5 for six and ten

dimensions, and in general for D > 5 the points are a/rh =
√

(D − 3)/(D − 5); the change in

convexity of the entropy corresponds to a blowing up of the convexity of the Gibbs potential. The

point C instead, at a/rh = 1/
√
3 and where the Gibbs potential has a change in convexity, has no

analog in the microcanonical scheme.

This is the starting point for studying the instabilities. The extension of the dynamical

stability studies to spinning black branes has not been yet developed. The analytic theory

of perturbation is much more involved. However, as for the static black branes, we expect

that the spinning black branes suffer of similar instabilities.

We anticipate that the observations made in this paper will be also useful in the future

investigations of the perturbations of higher-dimensional spinning black/rings holes as well

as for spinning black branes.
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A Temperature and angular velocities

Consider a general stationary 5-dimensional metric that corresponds to a black object with

two angular momenta14 :

ds2 = gtt(~x)dt
2 + 2gtφ(~x)dtdφ+ 2gtψ(~x)dtdψ + gφφ(~x) dφ

2

+ 2gφψ(~x) dφdψ + gψψ(~x) dψ
2 + gαβ(~x) dx

αdxβ (A.1)

∂t, ∂φ, and ∂ψ are Killing vectors. Rewrite the metric in the ADM form

ds2 = −N2dt2 + γij(dx
i +N i dt)(dxj +N j dt) (A.2)

with lapse function

N2 = −gtt + gφφ (N
φ)2 + gψψ (N

ψ)2 + 2 gφψN
φNψ (A.3)

and shift vector

Nφ =
gtψgφψ − gψψgtφ
g2φψ − gφφgψψ

, Nψ =
gtφgφψ − gφφgtψ
g2φψ − gφφgψψ

(A.4)

The event horizon is obtained for

N2 = 0 (A.5)

In other words, it is a Killing horizon of ∂t + Ωφ ∂φ + Ωψ ∂ψ, where Ωφ and Ωψ are the

angular velocities defined as the shift vectors at the horizon:

Ωφ = −Nφ
∣

∣

H
, Ωψ = −Nψ

∣

∣

H
(A.6)

Black holes are thermodynamic objects: the causal structure of spacetime can influence the

physics of a quantum field. The vacuum fluctuations near the event horizon cause the black

hole to emit particles with a thermal spectrum. The Euclidean regularity at the horizon is

equivalent to the condition that the black hole is in thermodynamical equilibrium.

By a straightforward computation one can eliminate the conical singularity in the Eu-

clidean section, (it, r), to obtain the periodicity of the Euclidean time. In this way, one

obtains the following expression for the temperature of the black hole:

T =
(N2)′

4π
√

grrN2

∣

∣

∣

∣

∣

H

(A.7)

We have used these definitions to compute the corresponding physical quantities of the

doubly spinning ring.

14A similar analysis for one angular momentum can be found in [34, 7].
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B Conditions for thermodynamic stability

In this appendix, we present the conditions for the thermodynamic stability and we also

give some useful explicit expressions for the response functions used in Section 4 — we

follow closely [35].

For simplicity, let us start with a black hole with one angular momentum. We are

interested in the thermodynamic potentials: the energy and its Legendre transforms.

The basic extremum principle of thermodynamics (for the entropy S) implies both that

dS = 0 and that d2S < 0. The second condition determines the stability of predicted equi-

librium states. The stability criterion in energy representation requires that an equilibrium

state at fixed S and J is a state of minimum energy, namely a minimum of E[S, J ]. The

local stability conditions ensure that inhomogeneities of either S and J separately
(

∂2E

∂S2

)

J

=

(

∂T

∂S

)

J

≥ 0,

(

∂2E

∂J2

)

S

=

(

∂Ω

∂J

)

S

≥ 0 (B.1)

and also that a coupled inhomogeneity of S and J together

det(Hess(E)) =
∂2E

∂S2

∂2E

∂J2
−
(

∂2E

∂S∂J

)2

≥ 0 (B.2)

do not decrease the energy.

In more generality the stability criterion states that the thermodynamic potentials are

convex functions of their extensive variables and concave functions of their intensive vari-

ables (see, e.g., [35]).

For a grand canonical ensemble defined at fixed temperature T and angular velocities Ωa
(intensive variables) the associated potential, the Gibbs free energy, satisfies the following

relations:

G[T,Ω] = E − TS − ΩJ , dG = −SdT − JdΩ (B.3)

In this case, the local stability conditions following from the convexity of the Gibbs function

yield
(

∂2G

∂T 2

)

Ω

= −
(

∂S

∂T

)

Ω

≤ 0,

(

∂2G

∂Ω2

)

T

= −
(

∂J

∂Ω

)

T

≤ 0 (B.4)

and

det(Hess(G)) =
∂2G

∂T 2

∂2G

∂Ω2
−
(

∂2G

∂T∂Ω

)2

≥ 0 (B.5)

Equivalently, the heat capacities (CΩ, CJ) and the ‘isothermal moment of inertia’ or ’com-

pressibility’ ǫ ≡ (∂J/∂Ω)T should be positive definite.

A generalization for two angular momenta is straightforward (see, also, [6]). The Hessian

is a 3× 3 matrix

Hess(G) = (−1)

(

CΩ T
−1 αa

αa ǫab

)
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where the matrix components are αa =
(

∂Ji
∂T

)

Ω
, ǫab =

(

∂Ja
∂Ωb

)

T
, and the indices cover the

angular directions a, b = φ, ψ.

Considering the relationship between the specific heats CΩ = CJ + T (ǫ−1)ab α
aαb it

can be shown that a thermodynamically stable system is characterized by positive heat

capacities CΩ > 0 and CJ > 0 and, also, a positive definite matrix of isothermal momenta

of inertia, i.e. spec[ǫab] > 0.

The (ψψ)-component of the isothermal moment of inertia tensor is

ǫψψ = − 4k4πλ(1 + λ+ ν)

G5(−1 + ν)4(1− λ+ ν)2
F (λ, ν)√

λ2 − 4ν(−8ν + λ2 + λ2ν) + λ3(1 + ν)− 2λ(−1 + 4ν + ν2)

where

F (λ, ν) = λ6(1 + ν)2 + λ5(1 + ν)2(1 +
√
λ2 − 4ν + ν) +

+λ4(1 + ν)[4 +
√
λ2 − 4ν + ν(2(1 +

√
λ2 − 4ν) + ν(−24 +

√
λ2 − 4ν + 2ν))]−

−16
√
λ2 − 4ν + ν[1 + ν(−14 + ν(18 + (−14 + ν)ν))] +

+2λ3(1 + ν)[2 +
√
λ2 − 4ν + ν(−25 +

√
λ2 − 4ν + ν(13− 11

√
λ2 − 4ν +

+ν(−7 +
√
λ2 − 4ν + ν)))] + 2λ2(1 + ν)[2 +

√
λ2 − 4ν + ν(−32 − 26

√
λ2 − 4ν +

+ν(32 + 14
√
λ2 − 4ν + ν(16− 6

√
λ2 − 4ν + (−2 +

√
λ2 − 4ν)ν)))]−

−4λ[−1 + ν(10 + 4
√
λ2 − 4ν + ν(−89− 12

√
λ2 − 4ν + ν(−12(−6 +

√
λ2 − 4ν) +

+ν(−23 + 4
√
λ2 − 4ν + (−2 + ν)ν))))]

The determinant is

ǫ =
4k8π2λ2(λ−

√
λ2 − 4ν)(λ+

√
λ2 − 4ν)2

√
ν(1 + λ+ ν)5

(G5)2(−1 + ν)4[−λ2 + (1 + ν)2]3/2[ν(−λ2 + (1 + ν)2)]3/2
G(λ, ν)

Z(λ, ν)
(B.6)

where

Z(λ, ν) = 8
√
λ2 − 4νν − λ3(1 + ν)− λ2

√
λ2 − 4ν(1 + ν) + 2λ(−1 + 4ν + ν2)

G(λ, ν) = λ5 + 7λ4(1 + ν)− λ2(1 + ν)[1 + 3
√
λ2 − 4ν + (2− 3

√
λ2 − 4ν)ν + ν2] +

+λ3[5− 6
√
λ2 − 4ν + (26 + 6

√
λ2 − 4ν)ν + 5ν2]− 8ν(1 + 11ν + 11ν2 + ν3)−

−λ[−3
√
λ2 − 4ν + (8− 27

√
λ2 − 4ν)ν + 9(16 + 3

√
λ2 − 4ν)ν2 + (8 + 3

√
λ2 − 4ν)ν3]
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