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Group field theory with non-commutative metric variables
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We introduce a dual formulation of group field theories, making them a type of non-commutative
field theories. In this formulation, the variables of the field are Lie algebra variables with a clear
interpretation in terms of simplicial geometry. For Ooguri-type models, the Feynman amplitudes are
simplicial path integrals for BF theories. This formulation suggests ways to impose the simplicity
constraints involved in BF formulations of 4d gravity directly at the level of the group field theory
action. We illustrate this by giving a new GFT definition of the Barrett-Crane model.

Introduction

Group field theories [1] (GFTs) are growing up as a
promising formalism for quantum gravity, combining ele-
ments from several other approaches [2]. They extend to
higher dimensions the idea of matrix models for 2d grav-
ity [3] of define the quantum dynamics of geometry (and
topology) as a sum over simplicial complexes weighted
by quantum amplitudes. They build up on the achieve-
ments of loop quantum gravity [4] and spin foam models
[5]. Loop quantum gravity describes the states of quan-
tum space in terms of spin networks; spin foam models
define their dynamics in a covariant language. GFTs
subsume this dynamics, as every spin foam model can be
interpreted as the Feynman amplitude of some GFT [6].

Several results in spin foam models, and the historic
roots in matrix models, suggest a close relation between
GFTs and simplicial gravity path integrals, as used in
other discrete approaches [7]. The very construction of
spin foam amplitudes is usually based on the geomet-
ric quantization of simplicial geometry [5, 8], and there
are close relations between simplicial and LQG canoni-
cal data [9]. In 3d, where BF theory coincides with 1st
order gravity, the Ponzano-Regge model for a simplicial
manifold without boundary can be derived from a path
integral for simplicial BF theory [5]. In 4d, where grav-
ity can be understood as a constrained BF theory [10],
most work aimed at identifying classical and quantum
constraints turning discrete B variables into tetrad vari-
ables [5, 8]. The resulting single-simplex amplitude be-
haves in a semi-classical limit as the cosine of the Regge
action for simplicial gravity [11]. Furthermore, the parti-
tion function of recent 4d models has been either derived
from a path integral perspective [12], or recast in the
form of a simplicial path integral, although with a non-
standard action [13].

However much more remains to be understood in this
direction. GFTs seem the most convenient setting to do
so. They provide the most complete definition of spin
foam models, and provide a 2nd quantization of funda-
mental building blocks of space represented dually as spin
networks or simplices, suggesting a similar duality be-
tween spin foam models and simplicial path integrals in
the corresponding Feynman amplitudes. For BF models,
they realize nicely the duality between the spin foam rep-

resentation of the dynamics and the representation as a
lattice path integral in connection variables. This is the
covariant counterpart of the two representations of LQG
states (and of the GFT field) in terms of cylindrical func-
tions or spin networks. All the above also motivated pre-
vious work attempting to encode simplicial geometry in
a GFT formulation with explicit B variables, and whose
Feynman amplitudes had the form of simplicial gravity
path integrals [14].

In parallel, interesting connections between spin
foam/GFT models and non-commutative geometry have
been discovered. The spin foam amplitudes for 3d grav-
ity coupled to point particles can be recast in the form
of Feynman amplitudes for an effective matter non-
commutative field theory [15] (and derived from an ex-
tended GFT action [16]). The same non-commutative
field theory describes the effective dynamics of pertur-
bations around classical solutions of the pure gravity
GFT [17], and a similar result holds in the 4-dimensional
Lorentzian setting [18], as well as in other GFT mod-
els [19] (the results of [19] also show the importance of
encoding correctly the non-commutativity of B variables
when including them in a GFT formalism). On top of
their interest for quantum gravity phenomenology [21],
these results suggest that non-commutative structures lie
hidden at the very foundations of the GFT formalism.

In this paper we realize in a natural way the above sug-
gestions. We introduce a representation of GFTs as non-
local, non-commutative quantum field theories on Lie al-
gebras, which we relate to the B variables of simplicial
BF theory. We prove that the GFT Feynman amplitudes
for arbitrary diagram, thus arbitrary simplicial complex,
are simplicial BF path integrals. So we realize an ex-
plicit duality between spin foam models and simplicial
gravity path integrals, stemming from a duality of repre-
sentations for the GFT field, obtained by Peter-Weyl de-
composition and by non-commutative Fourier transform
[15, 22]. This new representation clarifies the encoding
of simplicial geometry in the GFT action. Moreover, the
imposition of simplicity constraints can be performed in
a geometrically transparent manner directly at the GFT
level. We show this by giving a new GFT definition of
the Barrett-Crane model. The details of our construction
and results will be left to a following publication.
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Non-commutative representation of 3d GFT

We first consider Boulatov’s group field formulation of 3d
Riemannian gravity [20]. The variables are fields ϕ123 :=
ϕ(g1, g2, g3) on SO(3)3 satisfying the invariance:

ϕ123 = Pϕ123 :=

∫
dhϕ(hg1, hg2, hg3) (1)

The dynamics is governed by the action:

S =
1

2

∫
[dg]3 ϕ2

123 −
λ

4!

∫
[dg]6 ϕ123ϕ345ϕ526ϕ641

The Feynman graphs generated by this theory are 2-
complexes dual to 3d triangulations: the combinatorics
of the field arguments in the interaction vertex is that of
a tetrahedron, while the kinetic term dictates the gluing
rule for tetrahedra along triangles.
By Peter-Weyl expansion of ϕ into irreducible SO(3)

representations ji ∈ N, the field is pictured as 3-valent
spin network vertex; it is interpreted as a quantized trian-
gle, the three field arguments are associated to its edges.
The following will substantiate further this geometrical
picture. In this representation, the interaction term can
be written in terms of 6j-symbols, and the amplitude of
a Feynman graph gives the Ponzano-Regge model.
We now introduce an alternative formulation of the

model, obtained by means of a ‘group Fourier trans-
form’ [15, 22] mapping functions on a group to (non-
commutative) functions on its Lie algebra g. This trans-
form stems from the definition of plane waves eg(x) =

ei~pg ·~x as functions on g ∼ R
n, depending on a choice of

coordinates ~pg on the group manifold. In the sequel we
will identify functions of SO(3) with functions of SU(2)
invariant under g → −g.
We choose the coordinates ~pg = Tr|g|~τ , where |g| :=

sign(Trg)g, ~τ are i times the Pauli matrices and ‘Tr’ is
the trace in the fundamental representation. For x=~x ·~τ
and g=eθ~n·~τ , we thus have

eg(x) = eiTrx|g| = e−2i sin θ~n·~x

The Fourier transform of functions f(g) on SU(2) is

f̂(x) =

∫
dgf(g) eg(x)

where dg is the normalized Haar measure.
The image of the Fourier transform inherits an alge-

bra structure from the convolution product on the group,
given by the ⋆-product defined on plane waves as

eg1 ⋆ eg2 = eg1g2 .

There is a relation [22] between the ⋆-product and a dif-
ferential operator acting on ordinary functions on R

3,
encoded in the relation

∫
f ⋆ g =

∫
R3 f

√
1+∆g, with ∆

the Laplacian on R
3. On functions of SO(3), the Fourier

is invertible:

f(g) =
1

π

∫
d3x (f̂ ⋆ eg-1)(x)

With a bit more work the above construction is extended
to an invertible SU(2) Fourier transform [22].
Fourier transform and ⋆-product extend to functions

of several variables like the Boulatov field as

ϕ̂123 := ϕ̂(x1, x2, x3) =

∫
[dg]3 ϕ123 eg1(x1)eg2(x2)eg3(x3)

The first feature of the dual formulation is that the con-
straint (1) acts on dual fields as a ‘closure constraint’ for
the variables xj . Indeed, a simple calculation gives

P̂ϕ = Ĉ ⋆ ϕ̂, Ĉ(x1, x2, x3) = δ0(x1+x2+x3)

where δ0 is the element x = 0 of the family of functions:

δx(y) :=

∫
dg eg-1(x)eg(y) (2)

These play the role of Dirac distributions in the non-
commutative setting, in the sense that1

∫
d3y (δx ⋆ f)(y) =

∫
d3y (f ⋆ δx)(y) = f(x) (3)

We may thus interpret the variables of the Boulatov dual
field as the edges vectors of a triangle in R

3, and the dual
fields themselves as (non-commutative) triangles.
Since the ⋆-product is dual to group convolution, the

combinatorial structure of the action in terms of the dual
field matches the one in terms of the original field. We
may thus show that

S =
1

2

∫
[dx]3 ϕ̂123⋆ϕ̂123−

λ

4!

∫
[dx]6 ϕ̂123⋆ϕ̂345⋆ϕ̂526⋆ϕ̂641

where it is understood that ⋆-products relate repeated
indices as φi ⋆ φi := (φ ⋆ φ-)(xi), with φ-(x)=φ(-x). The
structure of this action is best visualized in terms of di-
agrams. Thus, kinetic and interaction terms identify a
propagator and a vertex

t

x1x2x3

y3y2y1

τ
x1

x2

x3

y3x4x5

y5

y2

x6

y6y4y1

ta

tb

tc

td

(4)

given by:

∫
dht

3∏

i=1

(δ-xi
⋆ eht

)(yi),

∫ ∏

t

dhtτ

6∏

i=1

(δ-xi
⋆ ehtt′

)(yi)

(5)

1 Seen as a function of R3, δ0 is the regular function, peaked on
x=0: δ0(x) ∝ J1(|x|)/|x|, with J1 the 1st Bessel function [22].
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with htt′ := htτhτt′ . We have used ‘t’ for triangle and
‘τ ’ for tetrahedron. The group variables ht and htτ arise
from (1), and should be interpreted as parallel transports
through the triangle t for the former, and from the center
of the tetrahedron τ to triangle t for the latter (see [14]).
The integrands in (5) factorize into a product of func-

tions associated to strands (one for each field argument),
with a clear geometrical meaning: the pair of variables
(xi, yi) associated to the same edge i corresponds to the
edges vectors seen from the frames associated to the two
triangles t, t′ sharing it. The vertex functions state that
the two variables are identified, up to parallel transport
htt′ , and up to a sign labeling the two opposite edge ori-
entations inherited by the triangles t, t′. The propagator
encodes a similar gluing condition, allowing for the possi-
bility of a further mismatch between the reference frames
associated to the same triangle in different tetrahedra.

Feynman amplitudes as simplicial path integrals

We now sketch the calculation of Feynman amplitudes.
In building up a closed graph, propagator and vertex
strands are joined to one another using the ⋆-product,
keeping track of the ordering of functions associated to
the various building blocks of the graph. Each loop of
strands bound a face of the 2-complex, which is dual to
an edge of the triangulation.
Under the integration over the group variables ht, htτ ,

the amplitude factorizes into a product of face ampli-
tudes. Let then fe be a face of the 2-complex, dual
an edge e in the triangulation, and consider the loop of
strands that bound it. The choice of an orientation and a
reference vertex defines an ordered sequence {τj}0≤j≤N

of vertices on the loop. It corresponds to an ordered set
of tetrahedra around e. Using (3), each vertex τj , after
contraction with the propagator tj joining τj and τj+1,
contributes with (δxj

⋆ ehjj+1
)(xj+1) to the face ampli-

tude, where hjj+1 = hτjtjhtjhtjτj+1
parallel transports j

to j + 1.
The face amplitude Afe [h] is then the cyclic ⋆-product

of all these contributions:

Afe [h] =

∫ N∏

j=0

d3xj
~⋆N+1

j=0 (δxj
⋆ ehjj+1

)(xj+1)

where xN+1 := x0. This amplitude encodes the identifi-
cation, up to parallel transport, of the metric variables
associated to e in different tetrahedron frames. We may
integrate over all metric variables xj in Afe [h], except for
that of the reference frame. Introducing the holonomy
H0 := h01 · · ·hN0 around the boundary of fe, we obtain
that

Afe [h] =

∫
d3x0 eH0

(x0)

Finally the Feynman amplitude reads:

Z(Γ) =

∫ ∏

t

dht

∏

e

d3xe e
i
∑

e
Tr xeHe (6)

The variables ht corresponds to the parallel transport
between the two tetrahedra sharing t; He is the holon-
omy around the boundary of fe, calculated from a chosen
reference tetrahedron frame.
Equ.(6) is the usual expression for the simplicial path

integral of first order 3d gravity (or 3d BF theory). The
Lie algebra variables xe, one per edge of the simplicial
complex, play the role of discrete triad; the group ele-
ments ht, one per triangle or link of the dual 2-complex,
play the role of discrete connection, defining the discrete
curvature He through holonomy around the faces dual to
the edges of the simplicial complex [5].
Open GFT Feynman amplitudes have fixed boundary

simplicial data. The one-vertex contribution to the 4-
point functions, for example, is the function of twelve
metric variables xi, x

′
i obtained by acting with a closure

operator Ĉ (propagator) on each external 3-stranded leg
of the vertex diagram in (4), building up four triangles
ta, · · · tc. The amplitude is the ⋆-product of the identifi-
cation functions δ-x′

i
(xi) of the boundary metric with the

BF action for a single simplex ei
∑

i Trxihi , hi = htτhτt′

being the parallel transport between the two triangles
sharing i, integrated over the bulk connection htτ . The
integrand can be viewed as constraints on the gauge con-
nection; in fact one can show that, in the limit of large
scale boundary geometries, the constraints become those
[14] characterizing a discrete Levi-Civita connection. For
generic open graphs, the amplitudes are given by a path
integral for the BF action augmented by the appropriate
boundary terms (see also [23]). Note that the (expo-
nential of the) BF action for a single simplex is already
explicitly present in the interaction term of the GFT ac-
tion. This can be useful to study the link with semi-
classical/continuum gravity directly at the GFT level.
Polynomial gauge invariant GFT observables in this

representation are labeled by spin-networks; they are ex-
pressed in terms of the Fourier dual of spin-network func-
tionals on the group. These dual spin-network function-
als show up as the basis states in a flux representation of
loop quantum gravity [24].
These results show an exact duality between spin foam

models and simplicial gravity path integrals, stemming
from two equivalent representations of the GFT field: as
a function of representation labels, following Peter-Weyl
decomposition, and as a non-commutative function on
Lie algebra variables, interpreted as metric variables.

Towards 4d gravity models

Going up dimensions, we consider the GFT model for
SO(4) BF theory, defined in terms of a gauge invariant
field ϕ1234=

∫
dhϕ(hg1, hg2, hg3, hg4) by the action:

S =
1

2

∫
ϕ2
1234 −

λ

5!

∫
ϕ1234 ϕ4567 ϕ7389 ϕ962 10 ϕ10 851.

The Feynman graphs are 2-complexes dual to 4d sim-
plicial complexes: the combinatorics of the interaction
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term is that of a 4-simplex; the kinetic terms dictates
the gluing rules for 4-simplices along tetrahedra. Using
harmonic analysis on the group the vertex term is written
in terms of SO(4) 15j symbols and the Feynman ampli-
tudes gives the Ooguri state sum model.
The SO(3) group Fourier transform naturally extends

to a Fourier transform on SO(4) ≃ SU(2) × SU(2)/Z2,
which is invertible on even functions f(g)=f(-g). In the
sequel we assume the further invariance of the Ooguri
field under gi → −gi in each of the variables.
The dual Ooguri field is a function of four so(4) Lie

algebra elements, or bivectors, associated to the four tri-
angles of each tetrahedron. Gauge invariance translates
into a closure constraint for the bivectors, meaning that
the four triangles close to form a tetrahedron. Kinetic
and vertex terms again encode the identification, up to
parallel transport, of the bivectors associated to the same
triangle in different tetrahedral frames. The computa-
tion of Feynman amplitudes proceeds analogously to the
3d case. The result is again a simplicial path integral for
BF theory analogue to (6), with integrals now over SO(4)
group and Lie algebra elements.
The new representation of the Ooguri model provides

a convenient starting point for imposing in a geomet-
rically transparent manner the discrete simplicity con-
straint that turn BF theory into 4d simplicial gravity
[8, 10]. Using the decomposition of x ∈ so(4) into selfd-
ual x+ and anti-selfdual x- su(2)-components, we impose
that the four bivectors in each tetrahedron are orthog-
onal to the same normal vector k∈S3 ∼ SU(2) to the
tetrahedron, by means of the constraint projector

Ŝk(x
-
j , x

+

j ) =

4∏

j=1

δ-kx-
j
k-1(x

+

j )

where the δ functions are given by (2). It acts on the
field as

(Ŝk ⋆ ϕ̂)(x) =

∫

SO(4)

dg Skϕ(g) eg-(x
-)eg+(x+)

with

Skϕ(g) :=

∫

SO(3)

duϕ(k-1ukg-, ug+)

where we have decomposed the group elements g into self-

dual g+ and anti-selfdual g- components. Hence Ŝk acts
dually as the projector onto fields on the homogeneous
space S3∼SO(4)/SO(3)k, where SO(3)k is the stabilizer
subgroup of the normal k. The case k = 1 corresponds
to removing the diagonal SO(3) subgroup; it reproduces
the standard Barrett-Crane projector [25].

By combining the simplicity projector Ŝ := Ŝ1 with

the closure projector, one may build up the field Ψ̂ :=

Ŝ ⋆ Ĉ ⋆ ϕ̂, which reproduces the GFT field used in the
standard GFT formulation of the Barrett-Crane model.
More precisely, combining the interaction term:

λ

5!

∫
Ψ̂1234 ⋆ Ψ̂4567 ⋆ Ψ̂7389 ⋆ Ψ̂962 10 ⋆ Ψ̂10 851

with the possible kinetic terms:

1

2

∫
Ψ̂⋆2

1234 ,
1

2

∫
(Ĉ ⋆ ϕ̂)⋆21234 or

1

2

∫
ϕ̂⋆2
1234

gives the versions of the Barrett-Crane model derived in
[27], [28] and [12] respectively. The origin of these differ-
ent versions can be understood geometrically, thanks to
the new GFT representation. In fact, given h ∈ SO(4),
we may show that

(eh ⋆ Ŝk)(x) = (Ŝh⊲k ⋆ eh)(x)

with h ⊲ k := h+k(h-)-1. This expresses the fact that,
after rotation by h, simple bivectors with respect to the
normal k become simple with respect to the rotated nor-
mal h ⊲ k. Therefore closure and simplicity constraints
do not commute. Moreover, whereas the model couples
correctly the bivector variables x across simplices, the
integration over holonomies effectively decorrelates the
normal vectors k associated to the same tetrahedron in
different 4-simplices. This implies a missing geometric
condition on connection variables hτσ. Work on a GFT
model where simplicity constraints are imposed covari-
antly is currently in progress [26].
A simplicial path integral formulation of the Barrett-

Crane model, in, say, its version [12], is obtained by using
the Feynman rules for the propagator and vertex:

4∏

i=1

(δ-xi
)(yi),

∫ ∏

t

dhτσ

10∏

i=1

(δ-xi
⋆ Ŝ ⋆ ehττ′

)(yi)

The amplitude of a graph dual to a triangulation ∆ takes
the form of the ⋆-evaluation of a non-commutative ob-
servable in BF theory:

ZBC(∆) =

∫ ∏

τσ

dhτσ

∫ ∏

t

d6xt (Ot ⋆ eHt
)(xt)

where the functions Ot(xt) implement simplicity
δ-h--1

0j
x-th-0j

(h+-1

0j x+

t h
+

0j) of the bivectors xt in each of the

4-simplex frames j=0· · ·N around t:

Ot = ⋆
N
j=0 δ-h--1

0j
•-h-

0j
(h+-1

0j •+ h+

0j)

Conclusions and perspectives

We have introduced a new non-commutative repre-
sentation of group field theories, based on the group
Fourier transform, turning them into non-local and non-
commutative field theories on Lie algebras. We have
shown that the resulting Lie algebra variables correspond
to the B variables of simplicial BF theory, in any dimen-
sion, and that the corresponding Feynman amplitudes for
arbitrary simplicial complex have the form of simplicial
BF path integral. This realizes an explicit GFT duality
between spin foam models and simplicial gravity path in-
tegrals, and allows to understand clearly how simplicial
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geometry is encoded in the GFT formalism. We have
also shown how the Barrett-Crane model for 4d gravity
is obtained in the new representation, and pointed out
the geometric insights this reformulation gives.
The new GFT representation, and the duality it real-

izes, can trigger much further progress. We mention here
a few research directions, already ongoing, whose results
will be reported elsewhere.
The interpretation of GFTs as 2nd quantized theories

of spin networks suggests to apply the group Fourier
transform to general cylindrical functions, namely to
generic loop quantum gravity states [24]. This should
allow to describe a flux representation of the theory, usu-
ally assumed to be intractable precisely because of the
non-commutativity of flux operators.
The new representation should also help the identifica-

tion of spacetime symmetries (e.g. diffeomorphisms [29])
which act on the B variables, at the level of the GFT
action [30] (see also [31]). Understanding the role of dif-
feomorphisms can then guide the study of the continuum
approximation of GFTs, and of their relation with gen-
eral relativity.
Obviously, the goal is the construction of a satisfac-

tory GFT model for quantum gravity in 4 dimensions.
In the new GFT representation, guided by the manifest
geometric meaning of the variables and the Feynman am-
plitudes, simplicity constraints on the B variables, with
and without Immirzi parameter, can be imposed in a nat-
ural way. Work on this is in progress and can either lead
to the definition of a new spin foam model for 4d quan-

tum gravity, or to a complete and geometrically clear
GFT formulation of the recently proposed ones. It can
also, in one stroke, give a reformulation of these models
as simplicial path integrals.

The new representation may help also in the study
of GFT renormalization [32] and, by means of this, of
their phase structure and continuum approximation [34].
It can be used for the introduction of scales (by re-
expressing the star product in terms of differential opera-
tors) allowing for a multi-scale analysis, and for defining
a new notion of (GFT) locality [33]. Moreover, it can be
used to characterize the regime in which general GFTs
reduce to the linearized approximation for which rigorous
power counting theorems can be proven [35].

Finally, it should reinforce the links between the GFT
formalism and non-commutative geometry, and allow
to push further the approach to quantum gravity phe-
nomenology [21] based on effective non-commutative
matter field theories.
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