English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors

MPS-Authors
/persons/resource/persons4101

Pohnert,  Georg
Max Planck Fellow Group Chemical Ecology of Plankton, Prof. Georg Pohnert, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

FGP019.pdf
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wondraczek, L., Grundler, A., Reupert, A., Wondraczek, K., Schmidt, M. A., Pohnert, G., et al. (2019). Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors. Scientific Reports, 9: 9600. doi:10.1038/s41598-019-45955-w.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4BA3-0
Abstract
Photoautotrophic microbes present vast opportunities for sustainable lipid production, CO2 storage and green chemistry, for example, using microalgae beds to generate biofuels. A major challenge of microalgae cultivation and other photochemical reactors is the efficiency of light delivery. In order to break even on large scale, dedicated photon management will be required across all levels of reactor hierarchy - from the harvesting of light and its efficient injection and distribution inside of the reactor to the design of optical antenna and pathways of energy transfer on molecular scale. Here, we discuss a biomimetic approach for light dilution which enables homogeneous illumination of large reactor volumes with high optical density. We show that the immersion of side-emitting optical fiber within the reactor can enhance the fraction of illuminated volume by more than two orders of magnitude already at cell densities as low as similar to ~5 10(4) ml(−1). Using the green algae Haematococcus pluvialis as a model system, we demonstrate an increase in the rate of reproduction by up to 93%. Beyond micoralgae, the versatile properties of side-emitting fiber enable the injection and dilution of light with tailored spectral and temporal characteristics into virtually any reactor containment.