English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A cytochrome P450 from juvenile mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis

MPS-Authors
/persons/resource/persons238064

Fu,  Nanxia
Research Group Dr. A. Burse, Chemical Defense of Leaf Beetles, Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons238067

Yang,  Zhi-ling
Research Group Dr. F. Beran, Detoxification in Insects, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4088

Pauchet,  Yannick
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4081

Paetz,  Christian
Research Group Biosynthesis / NMR, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3812

Boland,  Wilhelm
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3825

Burse,  Antje
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fu, N., Yang, Z.-l., Pauchet, Y., Paetz, C., Brandt, W., Boland, W., et al. (2019). A cytochrome P450 from juvenile mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. Insect Biochemistry and Molecular Biology, 113: 103212. doi:10.1016/j.ibmb.2019.103212.


Cite as: https://hdl.handle.net/21.11116/0000-0003-9712-E
Abstract
Juveniles of the leaf beetle Phaedon cochleariae synthesize iridoid via the mevalonate pathway to repel predators. The normal terpenoid biosynthesis is integrated into the dedicated defensive pathway by the ω-hydroxylation of geraniol to 8-hydroxygeraniol. Here we identify and characterize the geraniol 8-hydroxylase as a P450 monooxygenase using integrated transcriptomic and proteomic analyses. In the fat body, 73 individual cytochrome P450s were identified. The double stranded RNA (dsRNA)-mediated knock down of CYP6BH5 led to a significant reduction of 8-hydroxygeraniol-glucoside in the hemolymph and, later, of the chrysomelidial in the defensive secretion. Heterologously expressed CYP6BH5 converted geraniol to 8-hydroxygeraniol. In addition to geraniol, CYP6BH5 also catalyzes other monoterpenols, such as nerol and citronellol, into the corresponding α, ω-dihydroxy compounds.