English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An insect counteradaptation against host plant defenses evolved through concerted neofunctionalization

MPS-Authors
/persons/resource/persons3918

Heidel-Fischer,  Hanna M.
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3968

Kirsch,  Roy
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4116

Reichelt,  Michael
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons37502

Ahn,  Seung-Joon
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons16217

Wielsch,  Natalie
Research Group Mass Spectrometry, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3916

Heckel,  David G.
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4231

Vogel,  Heiko
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

HEC410.pdf
(Publisher version), 429KB

Supplementary Material (public)

HEC410s1.pdf
(Supplementary material), 2MB

Citation

Heidel-Fischer, H. M., Kirsch, R., Reichelt, M., Ahn, S.-J., Wielsch, N., Baxter, S. W., et al. (2019). An insect counteradaptation against host plant defenses evolved through concerted neofunctionalization. Molecular Biology and Evolution, 36(5), 930-941. doi:10.1093/molbev/msz019.


Cite as: https://hdl.handle.net/21.11116/0000-0002-EB66-3
Abstract
Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to co-evolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth (DBM), Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfatase-like genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the DBM genome encodes three glucosinolate sulfatases with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a co-evolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call ‘concerted neofunctionalization’.