English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liscombe, D. K., Usera, A. R., & O'Connor, S. E. (2010). Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(44), 18793-18798. doi:10.1073/pnas.1009003107.


Cite as: https://hdl.handle.net/21.11116/0000-0002-BDE6-6
Abstract
Madagascar periwinkle (Catharanthus roseus) is the sole source of the anticancer drugs vinblastine and vincristine, bisindole alkaloids derived from the dimerization of the terpenoid indole alkaloids vindoline and catharanthine. Full elucidation of the biosynthetic pathways of these compounds is a prerequisite for metabolic engineering efforts that will improve production of these costly molecules. However, despite the medical and commercial importance of these natural products, the biosynthetic pathways remain poorly understood. Here we report the identification and characterization of a C. roseus cDNA encoding an S-adenosyl-L-methionine-dependent N methyltransferase that catalyzes a nitrogen methylation involved in vindoline biosynthesis. Recombinant enzyme produced in Escherichia coli is highly substrate specific, displaying a strict requirement for a 2,3-dihydro bond in the aspidosperma skeleton. The corresponding gene transcript is induced in methyl jasmonate-elicited seedlings, along with the other known vindoline biosynthetic transcripts. Intriguingly, this unique N methyltransferase is most similar at the amino acid level to the plastidic γ-tocopherol C methyltransferases of vitamin E biosynthesis, suggesting an evolutionary link between these two functionally disparate methyltransferases.