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Abstract

Recently it has been argued that tree-level scattering amplitudes in N = 4 Yang-
Mills theory are uniquely determined by a careful study of their superconformal
and Yangian symmetries. However, at one-loop order these symmetries are known
to become anomalous due to infrared divergences. We compute these one-loop
anomalies for amplitudes defined through dimensional regularisation by studying
the tree-level symmetry transformations of the unitarity branch cuts, keeping track
of the crucial collinear terms arising from the holomorphic anomaly. We extract
the superconformal anomalies and show that they may be cancelled through a
universal one-loop deformation of the tree-level symmetry generators which in-
volves only tree-level data. Specialising to the planar theory we also obtain the
analogous deformation for the level-one Yangian generator of momentum. Explicit
checks of our one-loop deformation are performed for MHV and the 6-point NMHV
amplitudes.
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1 Introduction

Maximally supersymmetric N = 4 Yang–Mills theory (SYM) [1] is an important testing ground
for the foundations of four-dimensional quantum field theories. On the one hand, the model is
based on highly non-trivial interactions which are reasonably similar to those appearing in the
standard model of particle physics. On the other hand, a host of surprising features make the
theory much more tractable than many others. By maximally exploiting these features, we hope
to gain access to previously unexplored regions of the model, e.g. the finite coupling regime. Such
insights would not only be beneficial to the study of the particular model, but they could also
teach us about the (qualitative) behaviour of four-dimensional quantum field theory in general.

Maximal supersymmetry turns out to constrain the model uniquely up to the choice of a
gauge group and two coupling constants. It improves the quantum behaviour and leads to
various cancellations and simplifications. For instance, the model is “finite” [2, 3] in that its
beta function vanishes exactly, leading to unbroken (super)conformal symmetry at the quantum
level. Finiteness can be traced back to the large amount of supersymmetry, but there are also a
number of curious features not following from maximal supersymmetry, at least not immediately.
The AdS/CFT correspondence, [4], [5], claiming exact duality to IIB strings on AdS5 × S5

is doubtlessly the most influential property of N = 4 SYM which is far from obvious in the
standard quantum field theoretical formulation. Another important insight is that the planar
limit is apparently exactly integrable [6, 7] (for reviews see [8]). This enables one to compute
efficiently the spectrum of scaling dimensions of local operators using the Bethe ansatz and
related techniques instead of elaborate higher-loop QFT machinery. Integrability in the guise
of dual superconformal symmetry was also identified as the underlying reason for non-trivial
simplifications observed in the computation of planar scattering amplitudes: Hints of this hidden,
dual conformal symmetry were first seen in [9], were further studied in [10–12] and extended to
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dual superconformal symmetry in [13]. It was shown in [14,15] that this is indeed a symmetry of
the tree-level amplitudes. On the string theory side the dual symmetries were identified as the
symmetries of a T-dual model [16,17] and shown to be a part of the integrable hierarchy [18,17,
19]. For scattering amplitudes, integrability serves thus as an enhancement of superconformal
symmetry to an infinite-dimensional Hopf algebra called the Yangian [20]. As is commonly the
case in integrable systems, one may hope that the large amount of symmetry highly constrains
physical observables and that it predicts a unique S-matrix for planar N = 4 SYM.

Now it is well-known that scattering amplitudes are not properly defined in a conformal field
theory, so how to make sense of the above statements? Typically one introduces a regulator, e.g.
by going away from D = 4 to D = 4 − 2ε spacetime dimensions in a dimensional regularisation
scheme. Alternatively one can regulate the theory by introducing small masses for the particles
by going off-shell [10] or higgsing the theory e.g. [16,21]. In every case the regulator breaks con-
formal symmetry and scattering amplitudes become well-defined. After renormalisation one tries
to remove the regulator in order to return to the original model. For example, for local operators
the dimensional regularisation procedure leads to perfectly finite answers showing the desired
conformal behaviour, albeit with a non-trivial spectrum of anomalous dimensions. Scattering
amplitudes, however, remain divergent in the limit of vanishing regulator, hence they are prob-
lematic as anticipated. The main distinction between local operators and scattering amplitudes
is the following: The former introduce short-distance (UV) singularities due to multiple fields
at coincident spacetime points, while the latter introduce long-distance (IR) singularities due to
collinear massless particles. We know well how to renormalise UV singularities by redefining lo-
cal operators but this is not the case for the IR singularities. The structure of these divergences
is of course well known from the study of QCD — they factorise and exponentiate [22–25].
Furthermore in properly defined physical observables, [26], such as inclusive cross-sections or
hadronic event shapes we expect that all such divergences cancel (see [27] and [28] for recent
discussions of such observables in the current context). However, they cannot be removed from
the S-matrix itself. For the special case of the dual conformal symmetry we do have control
over the apparent breaking of the symmetry via the relation between light-like Wilson loops
and amplitudes [16, 29, 10, 30, 11]. As the IR divergences of the amplitudes are mapped to the
UV divergences, due to cusps, in the Wilson loops an all-order anomalous Ward identity can be
derived [11,12]. This in turn strongly constrains the form of the amplitudes.

Unfortunately we do not know how to make use of the (super)conformal symmetries or in-
tegrability to constrain the S-matrix at loop level. Yet it has become clear that the divergent
and finite contributions to the scattering amplitudes can be computed unambiguously and have
a physical interpretation. Furthermore conformal symmetry in N = 4 SYM is non-anomalous.
Consequently it is our firm belief that all symmetries apply to every physical observable such as
the S-matrix, even if some symmetries are obscured by quantum effects.

At first sight superconformal and Yangian symmetry appear to be good symmetries of the
tree level S-matrix whereas at loop level they are broken beyond repair. Fortunately, both state-
ments are not true. Even at tree level the conformal symmetry is superficially broken at singular
configurations where massless particles become collinear. Interestingly, the existence of collinear
particles is closely related to the subtleties in defining asymptotic states and scattering amplitudes
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in a conformal field theory: Multiple quanta with collinear momenta are physically indistinguish-
able from a single particle with the same overall momentum. Hence the Fock space description
for asymptotic states is not quite adequate, one ought to factor out collinear configurations. Un-
fortunately, such a projective space of asymptotic states is technically hard to realise and instead
it is easier to work in the larger Fock space with some projective structure implied. That the S-
matrix respects the projective structure can be inferred from the well-studied collinear behaviour
determined by the splitting functions [31,32]. Therefore the S-matrix is indeed a proper physical
object even in the presence of conformal symmetry or massless states. The problem rather lies
with conformal symmetry, because näıvely it does not respect the projective structure on Fock
space. Luckily the free representation of superconformal symmetry on scattering amplitudes can
be deformed in such a way as to make it compatible with the projective structure. In particular
this makes the tree level S-matrix exactly conformal.

One can see that näıve conformal symmetry is broken by a holomorphic anomaly due to
collinear particles [33–36]. At tree level this happens exclusively at singular particle configurations
which is why the anomaly can be ignored to large extent. At loop level the situation is more
complicated because particles running in loops can become collinear with others. Due to the
integration over loop momenta the anomaly is smeared over all particle configurations and thus
it always requires proper treatment.

In this paper we consider the superconformal and Yangian symmetries of one-loop scattering
amplitudes in N = 4 SYM. We will show how to deform the representation of superconformal
symmetry, in a manner generalising the tree-level construction [35], such that it annihilates
one-loop scattering amplitudes including the IR singularities as well as the finite contributions.
Importantly, we will work in a strictly on-shell framework for the S-matrix. As we will see,
such a framework is provided by generalised unitarity which was introduced in [37, 38] and
further developed in [39, 40]. These methods, based on studying the behaviour of amplitudes
across branch cut singularities [41] relate loop-level amplitudes to on-shell tree level amplitudes.
Symmetries of the latter are under full control and will dictate the structure of the symmetries at
one loop [42,36,43,44]. Although any other self-consistent regulator could be used in principle, we
shall choose a dimensional regularisation scheme for convenience. The majority of perturbative
results are formulated in this scheme where they take a reasonably compact form.

Our proposal shares several features with a recent proposal [43] which however uses a very dif-
ferent framework of off-shell amplitudes and a particular massive particle regularisation scheme.
Although the previous proposal is very elegant and economical, the application to the on-shell
S-matrix including its divergences appears to be subtle. In our framework we thus have to choose
different deformations whose action we can however define straight-forwardly on the IR-singular
on-shell S-matrix.

For the reader’s convenience we outline the contents of subsequent sections. We start in Sec. 2
with a review of the on-shell superspace description of tree-level scattering amplitudes. We discuss
the symmetries of the amplitudes and how they can be deformed to account for the holomorphic
anomaly which arises in collinear configurations. In Sec. 3 we turn to our main topic: Symmetries
of one-loop amplitudes. After an outline of our general method we analyse the portion of the
superconformal anomaly for a generic amplitude arising from unitarity cuts. We argue that the
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anomaly of the full amplitude can be trivially lifted from the cut contribution and propose a set
of deformations of the representation that annihilates all one-loop amplitudes. Restricting this
deformation to the planar limit we check by explicit calculation that all MHV, Sec. 4, and the
six-point NMHV, Sec. 5, amplitudes are indeed invariant with respect to the deformed generators.
In Sec. 6 we perform the analogous analysis for the level one momentum generator of the Yangian
and outline the necessary procedure for the level one supersymmetry generator. In Sec. 7 we
discuss the propagator iε prescription used in our definition of amplitudes. This allows us to
compare our proposal to that of [43]. We close with a discussion of our conclusions and several
appendices with further calculational details and conventions.

2 Tree Amplitudes and Their Symmetries

We start by reviewing tree-level scattering amplitudes and their symmetries in the on-shell su-
perspace formulation. This provides a context for our later discussion of one-loop amplitudes
and allows us to fix our notation.

2.1 On-Shell Superspace and Generating Functional

We will be concerned with the n-particle scattering amplitudes of U(Nc) N = 4 super-Yang-Mills
(see [45, 46] for recent, relevant reviews). These amplitudes can be conveniently expanded in a
basis of colour structures. At tree level only single-trace structures appear1

Aa1...ann (1, . . . , n) =
∑

σ∈Sn/Zn

Tr (T aσ(1) . . . T aσ(n))An(σ(1), . . . , σ(n)), (2.1)

where T a is an U(Nc) generator in the fundamental representation and a, b, . . . denote indices for
the adjoint representation.

The tree-level amplitudes take a particularly simple form when written as functions of the
on-shell spinor-helicity superspace coordinates (λαi , λ̃

α̇
i , η

A
i ) [47] (see also e.g. [48, 13, 49]). Here

α, β = 1, 2 and α̇, β̇ = 1, 2 are fundamental indices for two distinct su(2)’s and A,B = 1, 2, 3, 4
are indices for su(4). The commuting spinors λα and λ̃α̇ parametrise the on-shell momenta in
spinor notation pβα̇ = σβα̇µ pµ

pβα̇i = λβi λ̃
α̇
i , P βα̇ =

n∑
i=1

pβα̇i =
n∑
i=1

λβi λ̃
α̇
i , (2.2)

and can be used to form the usual invariants, i.e. 〈i, j〉 = εαγλ
α
i λ

γ
j and [i, j] = εα̇γ̇λ̃

α̇
i λ̃

γ̇
j . In

Minkowski signature the spinors are related by complex conjugation and for positive (negative)
energy particles we have λ̃ = +(−)λ̄. The Graßmann variable ηA allows one to combine the

1The trace in this expression can be expanded into U(Nc) structure constants when making use of the explicit
form of the colour-ordered amplitude An. As such it becomes valid for generic gauge groups.
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on-shell states of N = 4 SYM — the two gluon helicity states G±, the fermions ΓA/Γ̄A, and
scalars SAB — into a single superwavefunction [3, 50]

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηAΓA(λ, λ̃) + 1
2
ηAηBSAB(λ, λ̃)

+ 1
6
εABCDη

AηBηCΓ̄D(λ, λ̃) + 1
24
εABCDη

AηBηCηDG−(λ, λ̃) . (2.3)

Using the η’s one can form the supermomentum qi of a particle which serves as the fermionic
partner to the momentum pi (Q is the overall supermomentum)

qβAi = λβi η
A
i , QβA =

n∑
i=1

qβAi =
n∑
i=1

λβi η
A
i . (2.4)

It will often be convenient to refer to all spinor-helicity superspace coordinates in a collective
fashion through Λ := (λα, λ̃α̇, ηA). These can represent particles with both positive and negative
energies depending on the choice λ̃ = ±λ̄. Related to this we introduce the compact notation Λ̄
for flipping the energy as well as all other components of the momentum p and supermomentum
q

Λ̄ := (+λ,−λ̃,−η), eiϕΛ := (e+iϕλ, e−iϕλ̃, e−iϕη). (2.5)

The second notation eiϕΛ corresponds to a helicity rotation about the particle axis. Finally, we
introduce the canonical measure on superspace d4|4Λ := d4λ d4η. The bosonic integral d4λ :=
d2λ d2λ̄ is equivalent to the Lorentz-invariant on-shell integral and an integral over the particle
phase

d4λ = dϕ d4p δ(p2) = dϕ
d3p

2E
. (2.6)

The fermionic integral d4η implements the sum over all particle types. We shall assume that
integration is over positive and negative energies. To restrict the integral to the forward or
backward light-cone we shall use the notation d

4|4
± Λ.

The super-amplitudes An(Λ1, . . . , Λn) are polynomials in the ηi’s whose coefficients are the
amplitudes of the various component fields. For reasons of su(4)-invariance the η’s must come
in sets of four leading to the helicity classification

An =
n−2∑
k=2

An,k, An,k ∼ η4k. (2.7)

The terms An,m+2 are called NmMHV subamplitudes. Furthermore, conservation of momentum
and supermomentum as well as conformal transformations enforce that all amplitudes have a
common prefactor

An,k =
δ4(P ) δ8(Q)

〈12〉 . . . 〈n1〉
Rn,k. (2.8)

The remainder functions Rn,m+2 are homogeneous of degree 4m in the η’s. The first term Rn,2 is
simply 1, so we recover the well-known formula for MHV amplitudes [47,48],

An,MHV := An,2 =
δ4(P ) δ8(Q)

〈12〉 . . . 〈n1〉
, (2.9)
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and explicit, though somewhat more complicated, expressions for all other terms at tree level
can be found in [15].

In considering the symmetries it is useful to combine all amplitudes into a single generating
functional (see also [51]). We introduce a source field J(Λ) conjugate to the superspace field
Φ(Λ) and we shall use the compressed notation Ji := J(Λi) for the source field corresponding to
particle i. The generating functional of tree amplitudes reads

A[J ] =
∞∑
n=4

∫ n∏
i=1

(d4|4Λi)
1

n
Tr
(
J1 . . . Jn

)
An(Λ1, . . . , Λn) . (2.10)

The n-particle super-amplitude can be extracted by taking functional derivatives

J̌(Λ) :=
δ

δJ(Λ)
(2.11)

of the generating functional

Aa1...ann (Λ1, . . . , Λn) = J̌a1(Λ1) . . . J̌an(Λn)A[J ]
∣∣
J=0

, (2.12)

and we note that the commutative variations naturally account for the sum over all permutations
in (2.1).

2.2 Free Symmetries

We will be interested in how the superconformal algebra, psu(2, 2|4), is realised on the scattering
amplitudes. This algebra comprises the Lorentz rotations L, L̄, the internal symmetry rotations
R, momentum generators P, special conformal generators K, the dilatation generator D, the
Poincaré supercharges Q, Q̄ and special conformal supercharges S, S̄. Using the on-shell super-
space notation the free representation carried by a single on-shell superparticle can be written
very compactly [48]

Lαβ = λα∂β − 1
2
δαβλ

γ∂γ, L̄α̇β̇ = λ̃α̇∂̃β̇ − 1
2
δα̇
β̇
λ̃γ̇ ∂̃γ̇,

RA
B = ηA∂B − 1

4
δABη

C∂C , D = 1 + 1
2
λγ∂γ + 1

2
λ̃γ̇ ∂̃γ̇,

QaB = λαηB, SaB = ∂α∂B,

Q̄ȧ
B = λ̃α̇∂B, S̄Bȧ = ηB∂̃α̇,

Pβα̇ = λβλ̃α̇, Kβα̇ = ∂β∂̃α̇, (2.13)

where we abbreviate ∂a = ∂/∂λa, ∂̃ȧ = ∂/∂λ̃ȧ and ∂A = ∂/∂ηA. Furthermore, there is a central
charge C

C = 1 + 1
2
λγ∂γ − 1

2
λ̃γ̇ ∂̃γ̇ − 1

2
ηC∂C . (2.14)

It acts as the constraint that every physical particle must be uncharged under it, which follows
from (2.3) and the helicities of the various fields.
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A
(0)
n

G
(0)
1→1

+
A

(0)
n−1

G
(0)
1→2

+

A
(0)
n−2

G
(0)
1→3

= 0

Figure 1: Statement of exact invariance of tree amplitudes under the deformed super-
conformal representation.

The corresponding representation of a generic generator Gfree on n particles is simply given
by the sum over actions on individual particles Gfree

i ,

Gfree =
n∑
i=1

Gfree
i . (2.15)

2.3 Exact Tree-Level Symmetries

Invariance of the amplitude An under the generator G is the statement

GAn = 0. (2.16)

As was discussed at length in [35] the free representation does not exactly annihilate tree-level
amplitudes, but rather must be deformed by generators which change the number of external
legs. These non-linear contributions to the generators in the interacting classical theory are
generically of the form, see Fig. 1,

G = G1→1 + G1→2 + G1→3 . (2.17)

The first term G1→1 = Gfree is the free generator discussed above, which simply takes a single
leg and returns a single modified leg. The correction terms compensate for the contributions
occurring at values of the external momenta where particles become collinear. The deformation
G1→2 can be found by explicitly calculating the action of generators involving derivatives in λ or
λ̃ = sign(E(λ))λ̄ on the n-point amplitude, An and by carefully accounting for the holomorphic
anomaly terms, which arise in (3, 1) spacetime signature, i.e.

∂

∂λ̃α̇
1

〈λ, µ〉
= 2π sign

(
E(λ)E(µ)

)
εα̇γ̇µ̃

γ̇δ2
(
〈λ, µ〉

)
. (2.18)

It was shown in [35] that this anomaly is equivalent to attaching an anomaly three-vertex G3

to an amplitude with one leg less. The anomaly is thus cancelled by deforming the näıve free
generator (left in Fig. 1) by a term G1→2 which attaches the same vertex to the amplitude but
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with the opposite sign (middle in Fig. 1). For a three-vertex of massless particles the support
must be on configurations with all three momenta collinear pµ1 ∼ pµ2 ∼ pµ3 , i.e.

G3 ∼ δ4(λ1̄ − e−iϕλ3 sinα) δ4(λ2̄ − e−iϑλ3 cosα). (2.19)

Furthermore, their colour structure equals the structure constants fabc

Gabc
3 (Λ1, Λ2, Λ3) = ifabcG3(Λ1, Λ2, Λ3). (2.20)

The third term G1→3 corresponds to a four-vertex G4. Luckily, G1→3 arises only in the closure
of the algebra. For this reason it is not necessary to specify the vertex G4 explicitly; it consists
of a combination of two G3’s. To complete the picture it is instructive to note that also the free
representation corresponds to a vertex, but now with two legs

Gab
2 (Λ1, Λ2) = δabG2(Λ1, Λ2), G2(Λ1, Λ2) = Gfree

1 δ4|4(Λ1 − Λ̄2). (2.21)

Here Gfree
1 is the free generator acting as a differential operator on the spinor-helicity superspace

with label 1.
In the language of sources and generating functionals the deformations are very natural

G1→1 =

∫
(d4|4Λ)2Gab

2 (Λ1, Λ2)Ja(Λ1)J̌ b(Λ̄2),

G1→2 = 1
2

∫
(d4|4Λ)3 sign(E1E2)Gabc

3 (Λ1, Λ2, Λ3)Ja(Λ1)J b(Λ2)J̌ c(Λ̄3). (2.22)

The sign in G1→2 for opposite energy states 1 and 2 is required to match the sign in (2.18).
Invariance of the amplitude as a whole now becomes the statement GA[J ] = 0.

Among the superconformal generators, only G = S, S̄ and K receive deformations at tree
level. The latter follows from the algebra and hence we do not need to consider it further. The
two former generators receive only corrections of the type G1→2. In App. A we present a formal
derivation of the corresponding anomaly vertices. The resulting anomaly vertices read

(S3)αB(Λ1, Λ2, Λ3) = −2

∫
d4|4Λ′ δ4|4(Λ′) εαγλ

γ
3∂
′
B

∫
dα dϕ dϑ e−iϕ−iϑ

· δ4|4(e−iϕΛ3 sinα + eiϑΛ′ cosα− Λ̄1)

· δ4|4(e−iϑΛ3 cosα− eiϕΛ′ sinα− Λ̄2) +
two cyclic

images
,

(S̄3)Bα̇ (Λ1, Λ2, Λ3) = −2

∫
d4|4Λ′ δ4(λ′) εα̇γ̇λ̃

γ̇
3η
′B
∫
dα dϕ dϑ eiϕ+iϑ

· δ4|4(e−iϕΛ3 sinα + eiϑΛ′ cosα− Λ̄1)

· δ4|4(e−iϑΛ3 cosα− eiϕΛ′ sinα− Λ̄2) +
two cyclic

images
. (2.23)

The ranges for integration read 0 ≤ α ≤ π/2 and 0 ≤ ϕ, ϑ < 2π. The cyclic images account for
the different combinations of energy signatures as described in App. A.
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For comparison, the two-vertices for the free generators S, S̄ read, cf. (2.13)

(S2)αB(Λ1, Λ2) = ∂1,α∂1,Bδ
4|4(Λ1 − Λ̄2) ,

(S̄2)Bα̇ (Λ1, Λ2) = ∂̃1,α̇η
B
1 δ

4|4(Λ1 − Λ̄2) . (2.24)

An important point is that the deformed tree-level symmetries relate all tree amplitudes. As
described above we can label the amplitudes by the number of η’s, An,k ∼ η4k. The correction
to S̄ keeps k fixed while increasing n by one whereas the correction to S increases both k and n
by one. Thus by use of the generators we find relations between the variations of all amplitudes.

It has recently been shown, [36], that the free symmetries (including dual superconformal
symmetries) alone are insufficient to uniquely fix the tree amplitudes. They merely determine
that the amplitudes be linear combinations of dual superconformal invariants. However, the
demand of correct collinear behaviour (or the absence of so-called spurious poles) is, under
certain mild assumptions, sufficient to fix all relative coefficients and so uniquely determine
the full tree-level amplitude [52, 36]. Equivalently, demanding that the corrected generators
are exact symmetries, fixes all tree-level amplitudes. Of course all tree-level amplitudes have
already been explicitly determined in [15], by use of the BCFW recursion relations [53], and their
generalisations [54, 14, 55, 49]. However, the extent to which the symmetries fix the amplitudes
is an important question, particularly beyond tree level where we no longer have such efficient
methods as BCFW.

A related analysis of the symmetries of tree level amplitudes was performed in [43]. This
work made use of the CSW [56] approach to constructing scattering amplitudes and, with some
assumptions regarding the regularisation of divergences, could be generalised to loop level. We
will comment on the relation of our proposals to that of [43] in Sec. 7.

3 Superconformal Symmetry at One Loop

We now wish to consider scattering amplitudes beyond tree level in order to account for the new
features to which loops give rise. One important aspect of massless theories is the existence of
infra-red divergences which necessitate the introduction of a regulator. In part, these divergences
originate from virtual particles in loops becoming collinear with external legs. These divergences
cannot be removed, but rather cancel only when calculating physical observables, and so the
amplitudes will explicitly depend on the regulator.

We will expand the amplitudes using the loop counting parameter2 3

g2 =
g2

YMCA

16π2
. (3.1)

2We shall use a minimal subtraction scheme without absorbing predictable numerical combinations like γ or
log 4π into the coupling constant. Instead we will carry them along in a constant cε = 1 +O(ε), see (F.2).

3For general gauge groups we write the loop counting parameter in terms of the quadratic Casimir. For U(Nc)
gauge group and with normalisation Tr(tatb) = δab, CA = Nc.
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n−1

G
(0)
1→2
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A

(0)
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(1)
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+
A

(0)
n−1

G
(1)
2→3

+ . . .+
A

(0)
n−1

G
(1)
1→2

= 0

Figure 2: Deformations of generators necessary for invariance of scattering amplitudes
at loop level.

so that

Aa1...ann (1, . . . , n) =
∞∑
`=0

g2`
(
A(`)

)a1...an
n

(1, . . . , n) . (3.2)

In principle one can further expand the amplitudes in an appropriate basis of colour structures
at each order. For example, at one loop there are double traces in addition to the single traces
seen already at tree level. However we will for the most part treat the general case and only
simplify to specific colour structures in considering the planar limit.

In explicit calculations of amplitudes it is common to make use of dimensional regularisation4

where D = 4 − 2ε and for concrete calculations this is the regularisation we will consider. The
amplitudes will have singularities as ε → 0, typically 1/ε2 per loop level for a conformal theory.
The structure of these divergences is well understood, see e.g. [23, 25], being determined by
an evolution equation which follows from gauge invariance and the factorisation of processes
separated by energy scales.

The introduction of the regulator breaks conformal symmetry and thus the divergent parts
of the amplitude will manifestly fail to be invariant.5 Generically even the finite parts of the
loop-level amplitudes will not be annihilated by the tree-level generators. However, by introduc-
ing further deformations of the generators we can account for these effects and show that the
amplitudes are indeed invariant. Said deformations will in general involve more external legs and
are schematically of the form

Gm→n ∼
∫

Tr
(
J . . . J︸ ︷︷ ︸

n

J̌ . . . J̌︸ ︷︷ ︸
m

)
. (3.3)

Such an operator grabs m legs of an amplitude and replaces them by n. Acting on an `-loop
amplitude with p external legs this could cancel a term arising from the free generator acting on
an `+m− 1 loop amplitude with p+ n external legs. In addition to creating loops by acting on
multiple legs of an amplitude, deformations can contain loops within themselves. The general
structure of the deformations necessary to annihilate the one-loop amplitudes is shown in Fig. 2.
It is the goal of the subsequent sections to find the explicit form of these deformations.

4In order to maintain consistency with the supersymmetric Ward identities a supersymmetric variant, such as
dimensional reduction [57], should be chosen.

5In fact, the most divergent parts actually are invariant, but for the subleading (including finite) parts invari-
ance fails
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disc A(1) =

2

1

A(0) A(0)

Figure 3: Discontinuity of A(1)

3.1 General One-Loop Anomaly of Cuts

Considered as functions of the kinematic invariants, loop-level amplitudes have branch cuts, in
addition to collinear singularities and multi-particle poles which appear already at tree level.
The form of the discontinuity across a given cut is determined by unitarity and at one loop
can be expressed as a phase space integral over products of tree-level amplitudes. In fact, in
supersymmetric theories one can reconstruct the entire amplitude from its cuts. Such unitarity
methods, introduced in [37, 38] and further developed in [39, 40], have proved tremendously
powerful calculational tools and are a convenient method for uncovering the structure of the
symmetries at one loop [42,36,43,44].

As was the case at tree level it is convenient to make use of the generating functional language
as it naturally allows for the length-changing deformations and includes the sum over all cuts.
We start with with the definition of the unitarity cut, see Fig. 3,6

discA(1) = −1
4

(
i

4π2CA

)∫
(d4|4Λ)2∆ε

12(J̌a1̄ J̌
b
2̄A

(0))(J̌a1 J̌
b
2A(0)). (3.4)

The above unitarity relation is to be understood as follows: The generating functionals A(0) both
represent a tree level subamplitude with an indeterminate number of legs (saturated with source
fields J). From each subamplitude we grab two legs by action with the source variation J̌ . We
then perform an on-shell integration over the momenta for each pair of legs. The measure ∆ε

12 is
non-zero only where the energies of the two particles have equal signs. Technically it is achieved
by the following step function θ of the two-particle invariant sj,k

∆ε
12 = θ(−s12) +O(ε), sj,k = (pj + pk)

2 = 〈j, k〉[k, j]. (3.5)

This step function also specifies which particular two-particle channel we are talking about. In
some cases the above integral is divergent so that the O(ε) contributions to the measure ∆ε

12

become important and will serve as a regulator. We will specify its precise form later where we
need it.

The tree amplitude functionals A(0)[J ] in the cut are both invariant, so the tree generator
G(0) will see only the source variations J̌

G(0) discA(1) = −1
2

(
i

4π2CA

)∫
(d4|4Λ)2∆ε

12(J̌a1̄ J̌
b
2̄A

(0))
(
[G(0), J̌a1 J̌

b
2 ]A(0)

)
. (3.6)

6In anticipation of taking the planar limit for the U(Nc) case, we have included a factor of the quadratic
Casimir, CA, in the loop counting parameter g2, see (3.1), and thus we need to cancel it here.
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Figure 4: Three types of anomalies on the cut.

We can now substitute the definition of the deformed generic generator at tree level G(0) =
G

(0)
1→1 + G

(0)
1→2 with

G
(0)
1→1 =

∫
(d4|4Λ)2Gab

12̄J
a
1 J̌

b
2 , G

(0)
1→2 = 1

2

∫
(d4|4Λ)3 sign(E1E2)Gabc

123̄J
a
1J

b
2 J̌

c
3 . (3.7)

Here, and subsequently, we use an analogous notation for the kernels as was introduced for the
sources e.g. Gab

2 (Λ1, Λ̄2) = Gab
12̄. The action of the generator on the J̌a1̄ J̌

b
2̄A

(0) subamplitudes yields(
i

4π2CA

)∫
(d4|4Λ)3∆ε

12G
bc
23̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0))

+

(
i

4π2CA

)∫
(d4|4Λ)4∆ε

12 sign(E4E2)Gdbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(Jd4 J̌
a
1 J̌

c
3A(0))

+ 1
2

(
i

4π2CA

)∫
(d4|4Λ)3∆ε

12 sign(E1E2)Gabc
123̄(J̌a1̄ J̌

b
2̄A

(0))(J̌ c3A(0)). (3.8)

The three types of contributions are depicted in Fig. 4, they correspond to

• For the generators we are interested in, for example the dilatation generator D, or the
superconformal boost S̄, the first term can be integrated by parts to write it as a commutator
of the generator with the measure. For the case of the generators without a holomorphic
anomaly, e.g. the dilatation generator, this is the only anomalous contribution.

• The second term corresponds to the case where the anomaly sits partially inside the loop
integral. It occurs where one external and one internal leg become collinear.

• The third term occurs when two internal legs become collinear; that is when the anomaly
vertex sits entirely inside the loop integral. As we will see below this term corresponds to
a one-loop correction to the collinear limit and is only non-trivial for the two particle cut.

Let us consider these various contributions in more detail.
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3.2 Anomaly of the Measure

We start with the first type of terms where we substitute the definition of the two-vertex G2

(2.21) and write it in a symmetric fashion as

1
4

(
i

4π2CA

)∫
(d4|4Λ)2∆ε

12

(
(Gfree

1̄ + Gfree
2̄ )J̌a1̄ J̌

b
2̄A

(0)
)
(J̌a1 J̌

b
2A(0))

+ 1
4

(
i

4π2CA

)∫
(d4|4Λ)2∆ε

12(J̌a1̄ J̌
b
2̄A

(0))
(
(Gfree

1 + Gfree
2 )J̌a1 J̌

b
2A(0)

)
. (3.9)

Effectively this is the action of the free superconformal generator G on the internal particles of
the cut integral. If the integral had been finite and if there had been no measure factor, the
integral would have been perfectly superconformally invariant and the above expression would
have vanished. Now one can convince oneself that for all free generators in (2.13) this is equivalent
upon integration by parts to the generator acting on the one-loop measure factor

− 1
4

(
i

4π2CA

)∫
(d4|4Λ)2(J̌a1̄ J̌

b
2̄A

(0))
[
Gfree

1 + Gfree
2 , ∆ε

12

]
(J̌a1 J̌

b
2A(0)). (3.10)

The derivation depends on the number of derivatives in the generator G, but the result is always
the same. In particular there is no anomaly for those generators under which the one-loop measure
is invariant, i.e. the super-Poincaré generators L, L̄, R, Q, Q̄ and P. The extra generators D, S,
S̄ and K in the superconformal algebra are anomalous. The anomaly of K follows from the one
of S, S̄ plus the algebra so we will not consider it separately.

The commutator gives rise to an overall factor of ε and so, as the actions of the generators are
finite, we can focus on the IR-divergent part of the phase space integral. Divergent contributions
arise only if one of the two subamplitudes has four legs. They originate within this subamplitude
and they are localised where the ingoing legs are both collinear with the outgoing ones. For
the purpose of computing the divergent part, we can therefore replace the loop momenta in the
second subamplitude by the external momenta of the first (for a discussion of this see e.g. [44]).
Importantly, the n-point tree-level amplitude can be pulled out of the integral so that we see
that the action of the anomaly is diagonal which is to say it takes two legs and gives two legs
back. Using the Schoutens identity and its cyclic symmetries the full four leg subamplitude, as
opposed to just a single colour ordering (see (2.1)), can be written as

A4 = − 1
12
fabef cde

∫
(d4|4Λ)4 Ja1J

b
2J

c
3J

d
4 A4, A4 =

δ4(P ) δ8(Q)

〈12〉〈23〉〈34〉〈41〉
. (3.11)

We must at this point also address the definition of the measure factor ∆ε
12 which regulates the

IR divergences. In the calculation of amplitudes it is common to use dimensional regularisation,
however it is difficult to define the action of the super-conformal generators away from four
dimensions. So we choose a regulator which can be written in four dimensional spinor variables
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but which reproduces the answers of dimensional regularisation that is to say7

∆ε
12 = cε

(
〈14〉〈23〉[12]

µ2〈34〉

)−ε
θ(−s12) , (3.12)

where 1 and 2 label the internal momenta and 3 and 4 label the external legs. The constant
cε = 1 + O(ε) defined in (F.2) contains some unphysical artifacts of dimensional regularisation.
This factor vanishes when external leg 1 becomes collinear with leg 4 or leg 2 becomes collinear
with leg 3 thus softening the divergence in the loop integral that occurs for this configuration.
With this definition it can be shown that for the generators of interest,

δ(8)(Q)

[
Gfree

1 + Gfree
2 , log

〈14〉〈23〉[12]

µ2〈34〉

]
= δ(8)(Q)

[
Gfree

3 + Gfree
4 , log

s34

−µ2

]
. (3.13)

This is obvious for the dilatation generator and requires only a little more effort for the fermionic
special conformal generators. Using this expression when one of the amplitudes has only four
legs, and using (3.11) such that

J̌a1̄ J̌
b
2̄A4 = fadef bce

∫
d4|4Λ3d

4|4Λ4 J
c
3J

d
4A1̄2̄34 , (3.14)

the anomaly can be written as

ε

4

(
i

4π2CA

)∫
d4|4Λ3d

4|4Λ4

(∫
d4|4Λ1d

4|4Λ2∆
ε
12A1̄2̄34

)
×
[
Gfree

3 + Gfree
4 , log

s34

−µ2

]
facef bde(J c3J

d
4 )(J̌a3 J̌

b
4A(0)). (3.15)

We can use the fermionic delta-function to perform the Graßmann integrations over legs 1 and 2
of the four point amplitude. We can use the fact that we have chosen our regulator such that it
reproduces the answers of dimensional regularisation to write∫

d4λ1d
4λ2∆

ε
12

〈12〉4 δ4(P )

〈12〉〈23〉〈34〉〈41〉
= (2π)2

∫
dDLIPS(λ1, λ2)

〈12〉4

〈12〉〈23〉〈34〉〈41〉

= 2i(2π)2 disc
cε
ε2

(
s34

−µ2

)−ε
. (3.16)

We substitute this into the above anomaly, relabel the indices and obtain

−1

2CA

∫
(d4|4Λ)2

(
disc

cε
ε

(
s12

−µ2

)−ε)[
Gfree, log

s12

−µ2

]
facef bde(J c1J

d
2 )(J̌a1 J̌

b
2A(0)). (3.17)

7This is essentially the same regulator, after using momentum conservation across the two-particle cut, as was
used in [58].
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We have now obtained the anomaly of the cut arising from the measure factor. It is finite as
ε → 0 and rational. However we are interested in the anomaly of the loop integral, not just its
cuts. In principle we should perform a dispersion integral to obtain the loop anomaly, but here
the result is obvious due to finiteness and rationality. For the generators of interest we have(

disc
cε
ε

(
s12

−µ2

)−ε)[
Gfree, log

s12

−µ2

]
= disc

[
Gfree,−cε

ε2

(
s12

−µ2

)−ε]
(3.18)

and we then simply remove the discontinuity operator from inside the anomaly. This is equivalent
to multiplying by the logarithm and adding a constant, though divergent term. The multipli-
cation by the logarithm clearly reproduces the correct discontinuity and the addition of the
divergent constant corresponds to the usual ambiguity involved in reconstructing a function from
its cuts. However as we shall see in the comparison to the explicit answers for the amplitudes in
Sec. 4 this is the correct procedure.

Altogether the loop anomaly due to the measure reads

− 1

2CA

∫
(d4|4Λ)2

[
Gfree,

cε
ε2

(
s12

−µ2

)−ε]
facef bdeJ c1J

d
2 J̌

a
1 J̌

b
2A(0). (3.19)

3.3 Collinearities in Loops

We now turn to contributions of the second kind where the anomaly vertex sits with two legs
inside the loop integral. Again we write it in a symmetric fashion

1
2

(
i

4π2CA

)∫
(d4|4Λ)4∆ε

12 sign(E4E2)Jd4G
dbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0))

+ 1
2

(
i

4π2CA

)∫
(d4|4Λ)4∆ε

12 sign(E4E2̄)Jd4G
dbc
42̄3(J̌a1̄ J̌

c
3̄A

(0))(J̌a1 J̌
b
2A(0)). (3.20)

We relabel particles 2 and 3 in the second term, and the two terms combine noting that on the
cut the energies have equal signs

1
2

(
i

4π2CA

)∫
(d4|4Λ)4

(
∆ε

12 −∆ε
13

)
sign(s12 − s13)Jd4G

dbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0)). (3.21)

We have furthermore used sign(E1E4) = sign(−s14) = sign(s12 − s13). Counting the delta
functions in the integrands — in the amplitudes and in the anomaly vertex (2.23) (see also
App. A) — we see that the three phase space integrals are completely localised: The loop
momentum yields four degrees of freedom while the on-shell connections in the triangle (Fig. 4)
contribute one constraint each. Collinearity in the anomaly vertex provides the final constraint
which localises the integral. Alternatively one can argue that the anomaly vertex offers one degree
of freedom corresponding to the momentum fraction. It is used up by forcing the third side of
the triangle on shell. Thus this cut anomaly is a finite and rational function of the kinematic
variables.
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Rationality and finiteness ensure that discontinuities originate only from the original cuts. As
we use dimensional regularisation (represented through the measure ∆ε

j,k here), it makes sense
to consider D-dimensional cuts with the discontinuity

− 2πi∆ε
j,k = −cε

ε
disc

(
sj,k
−µ2

)−ε
. (3.22)

Note that the factor sign(s12 − s13) does not lead to a discontinuity because it compensates a
sign originating from the on-shell integration over Λ1,2,3. Dropping the discontinuity operator we
find the following expression for the loop anomaly

1
2

(
1

16π3CA

)∫
(d4|4Λ)4 sign(s12 − s13)Jd4G

dbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0))

· cε
ε

((
s12

−µ2

)−ε
−
(
s13

−µ2

)−ε)
. (3.23)

As this expression is finite, we are free to expand the bracket in ε

−
(

1

16π3CA

)∫
(d4|4Λ)4 sign(s12 − s13)Jd4G

dbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0)) log

s12

s13

. (3.24)

This result actually follows directly by replacing ∆ε
j,k by step functions originating from the

discontinuity of a logarithm

− 2πi θ(−sj,k) = disc log
sj,k
−µ2

. (3.25)

3.4 One-Loop Splitting

We now turn to the third type of anomaly in Fig. 4, which occurs when the anomaly vertex sits
entirely inside the loop integral

1
4

(
i

4π2CA

)∫
(d4|4Λ)3∆ε

12 sign(E1E2)Gabc
123̄

[
(J̌a1̄ J̌

b
2̄A

(0))(J̌ c3A(0)) + (J̌ c3A(0))(J̌a1̄ J̌
b
2̄A

(0))
]
. (3.26)

Recalling the structure of the anomaly vertex we can see that this contributes when the internal
momenta, labelled 1 and 2, become collinear and proportional to 3. Let us consider the case
where we have a four point amplitude on the one side of the cut. Using the expression for the
four-point amplitude, (3.11), we can write

Gabc
123̄(J̌a1̄ J̌

b
2̄A

(0)
4 ) = ifabcfadgf begG3

∫
d4|4Λ3d

4|4Λ4J
e
3J

d
4A1̄2̄34 . (3.27)

Now, with the aid of the Jacobi identity and the relation between the dual Coxeter number,
fabcfd

bc = CVδad, and the quadratic Casimir, CA, we see that the colour structures combine to
produce an overall factor of CAf

ade which cancels the CA in the prefactor.
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Figure 5: The two contributions to the collinear limit of the one-loop amplitude.
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Figure 6: Unitarity cut of the one-loop splitting function.

As the two internal legs become collinear the remaining, external, two legs of the four-point
amplitude also become collinear. We see that this contribution arises from the limit of the n-
point amplitude as two external legs become collinear and so is related to the splitting function.
There are several subtleties involved in taking this limit; for example the kinematic invariant for
this channel, s12, is actually zero. It is therefore useful to recall some salient facts about the
one-loop splitting function; we will closely follow the discussion in [32].

The one-loop amplitude, in the limit where two momenta become collinear pa → z(pa + pb),
pb → (1− z)(pa + pb), has two contributions, Fig. 5, which are given by

A(1)
n (1, . . . , a, b, . . . , n)

a||b−−→ Split(0)(a, b)A
(1)
n−1(1, . . . , (a + b), . . . , n)

+Split(1)(a, b)A
(0)
n−1(1, . . . , (a + b), . . . , n). (3.28)

The first term is the tree-level splitting function which scales as s
−1/2
ab and the effects of which

have already been accounted for by the tree-level deformation of the generators. In terms of
cuts they are captured by n-particle cuts, n > 2, where the anomalous contribution forces two
external legs to become collinear. The second set of contributions correspond to the one loop
splitting function

Split(1)(a, b) = Split(0)(a, b)rS(z, sab) (3.29)

where rS(z, sab) is independent of the flavour or helicity of the particles labelled a and b.
This term is captured by the two-particle, “singular” channel, where on one side of the cut

we have a four point amplitude. As discussed in [32], the four point function is singular in
this limit, having a pole in sab rather than a square root singularity. However as momentum
conservation also forces the loop momenta to become collinear we can use the factorisation of
the n-particle amplitude on the other side of the cut to rewrite the expression as the cut of the
function Split(1)(a, b), see Fig. 6. By evaluating this cut or, alternatively, by taking the limit on
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the scalar box functions which define the one-loop amplitude one can find an explicit expression
for rS(sab, z),

rS(sab, z) = −
(
sab

−µ2

)−ε [ 1

ε2
− 1

ε
log z(1− z) + log2 1− z

z
+
π2

6

]
. (3.30)

In this definition there is an ambiguity depending on the order in which one takes the limits
ε → 0 and sab → 0. One prescription is to take the singular momentum to zero before going to
four dimensions this results in rS(0, z) = 0. However one can imagine different prescriptions such
as setting sab → −µ2 and then taking ε→ 0 defining rS(−µ2, z).

One can write the anomaly as a one-loop anomaly vertex, schematically, G(1) ∼ rSG
(0) where

G(0) denotes the tree-level anomaly vertex. More concretely for S̄,(
S̄(1)
)abc

123
= −2ifabc

∫
d4|4Λ′ δ4(λ′) εα̇γ̇λ̃

γ̇
3η
′B
∫
dα dϕ dϑ eiϕ+iϑrS(α)

· δ4|4(e−iϕΛ3 sinα + eiϑΛ′ cosα− Λ̄1)

· δ4|4(e−iϑΛ3 cosα− eiϕΛ′ sinα− Λ̄2) +
two cyclic

images
, (3.31)

where if we use the second prescription for the splitting function we have (z = sinα)

rS(α) = −
[

1

ε2
− 2

ε
log(cosα sinα) + 4 log2 cotα +

π2

6

]
. (3.32)

Thus the anomalous contribution of the third kind is explicitly

1
2

∫
(d4|4Λ)3 sign(E1E2)(G(1))abc123̄J

a
1J

b
2 J̌

c
3 . (3.33)

In principle we have to additionally consider the cases where we have more than two external
legs on both sides of the cut. These terms correspond to one-loop corrections to multi-particle
factorisation. For example, the contribution of the cut with a five-point amplitude one side is
supported on the region of kinematical space where the sum of three external particles becomes
null. However for our definition of the amplitudes, discussed further in Sec. 7 but essentially
taking the principle part, there are no anomalous contributions to S or S̄ on this support.

3.5 Deformation of the Representation

In summary of (3.19), (3.24) and (3.33) we find the total one-loop anomaly

G(0)A(1) =
−1

2CA

∫
(d4|4Λ)2

[
Gfree,

cε
ε2

(
s12

−µ2

)−ε]
facef bdeJ c1J

d
2 J̌

a
1 J̌

b
2A(0)

−
(

1

16π3CA

)∫
(d4|4Λ)4 sign(s12 − s13)Jd4G

dbc
423̄(J̌a1̄ J̌

b
2̄A

(0))(J̌a1 J̌
c
3A(0)) log

s12

s13

− 1
2

∫
(d4|4Λ)3 sign(E1E2)G

(1)abc

123̄
Ja1J

b
2 J̌

c
3A(0). (3.34)
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Importantly all of these terms can be written as some variation acting on the tree amplitude
G(0)A(1) ∼ A(0). Thus we can cancel the anomaly easily G(0)A(1) + G(1)A(0) = 0 by introducing
a corresponding one-loop deformation of the superconformal representation

G(1) = G
(1)
2→2 +

∞∑
k=3

G
(1)
2→k + G

(1)
1→2. (3.35)

The first term is meant to cancel the contribution due to the measure anomaly. Here we first
introduce an operator Ẑ

(1)
2→2 which captures the IR singularities in a one-loop amplitude

Ẑ
(1)
2→2 = − 1

2CA

∫
(d4|4Λ)2 cε

ε2

(
s12

−µ2

)−ε
facef bdeJ c1J

d
2 J̌

a
1 J̌

b
2 . (3.36)

Note that the momenta of the particles 1, 2 are not changed by this operator, it merely acts
non-trivially on the colour-structure and multiplies by a divergent function of the two-particle
invariant s12. In particular, this operator allows to split a one-loop amplitude into IR-divergent
contributions and a finite remainder Ã(1) [22–25]

A(1) = Ẑ
(1)
2→2A(0) + Ã(1). (3.37)

According to (3.34) the generator deformation can now be written in the form of the commutator

G
(1)
2→2 =

[
Ẑ

(1)
2→2,G

(0)
1→1

]
. (3.38)

It is obvious that this type of deformation respects the superconformal algebra because it merely
consists in a perturbative similarity transformation of the free generators.

The second term cancels the anomaly due to collinearities in the loop

G
(1)
2→k =

(
1

16π3CA

)∫
(d4|4Λ)4 sign(s12 − s13)Jd4G

dbc
423̄(J̌a1 J̌

c
3A

(0)
k+1) log

s12

s13

J̌a1̄ J̌
b
2̄ . (3.39)

Note that this term is not uniquely determined because we only know its action on tree amplitudes
A(0) and not on generic functions. The point is that the expression already contains a tree
amplitude A(0) and thus when it acts on tree amplitudes it will automatically symmetrises the
two. We could thus, alternatively, drop one of the terms of the logarithm involving the invariants
s12 or s13 in (3.39) and multiply by two. It has the same effect on tree amplitudes, but it is
a different deformation of the representation. The third term removes the one-loop collinear
anomaly

G
(1)
1→2 = 1

2

∫
(d4|4Λ)3 sign(E1E2)G

(1)abc

123̄
Ja1J

b
2 J̌

c
3 . (3.40)

See Fig. 7 for an illustration of the one-loop deformations G(1) acting on an amplitude.
We will see in Sec. 4 that exactly these deformations are required to make planar MHV

amplitudes superconformally invariant.
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(0)
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(1)
2→2 A
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(1)
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(0)
n−1G

(1)
1→2

Figure 7: Structure of the deformations at one loop.

3.6 Planar Representation

The above anomaly and the corresponding deformation of the representation hold for arbitrary
gauge groups of finite rank. It is often convenient to restrict to the planar limit in a U(Nc)
gauge group where most expressions simplify. Let us therefore formulate the deformation in the
planar limit. We act with the generators on a functional X [J ] which is based on a colour-ordered
function X according to (2.10). In the following we shall use a notation where the indices in
some quantity Xk

j denote a range of k adjacent particles starting at particle j. For example we
introduce the partial momentum, supermomentum and Lorentz invariants

P k
j :=

k−1∑
i=0

pj+i, Qk
j :=

k−1∑
i=0

qj+i, tkj := (P k
j )2. (3.41)

The generator G
(2)
2→2 is given in terms of the IR-singularity operator Ẑ

(1)
2→2 in (3.36). In the

planar limit, the colour structure forces this operator to act on two adjacent legs of the amplitude.
Hence we can write its action in the following form

Ẑ
(1)
2→2 =

n∑
i=1

(Ẑ
(1)
2→2)2

i , (Ẑ
(1)
2→2)2

i = −cε
ε2

(
t2i
−µ2

)−ε
. (3.42)

Now the correction term G
(1)
2→2 in (3.38) has a particularly simple structure in the planar limit

G
(1)
2→2 =

[
Ẑ

(1)
2→2,G

(0)
1→1

]
=

n∑
i=1

(G
(1)
2→2)2

i , (G
(1)
2→2)2

i =
[
(Ẑ

(1)
2→2)2

i ,G
free
i + Gfree

i+1

]
. (3.43)

This generator acts on two adjacent particles i, i + 1. As noted above this type of deformation
applies to the generators D, S, S̄ and K. The latter can always be expressed through commutators
and hence we list an explicit result only for the first three

(D
(1)
2→2)2

i = −2cε
ε

(
t2i
−µ2

)−ε
,

((S
(1)
2→2)2

i )αB = −cε
ε

(
t2i
−µ2

)−ε
εαγ

〈i, i+ 1〉
(
λγi+1∂i,B − λ

γ
i ∂i+1,B

)
,

((S̄
(1)
2→2)2

i )
B
α̇ = −cε

ε

(
t2i
−µ2

)−ε
εα̇γ̇

[i, i+ 1]

(
λ̃γ̇i+1η

B
i − λ̃

γ̇
i η

B
i+1

)
. (3.44)
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Let us now act on some colour-ordered amplitude function Xn with the generator G
(1)
2→k. Due

to the inhomogeneous nature of the generator G
(1)
2→k it will return some amplitude function Yn+k−2

with (n+ k − 2) legs

G
(1)
2→kXn = Yn+k−2. (3.45)

As before the two variations in (3.39) must hit adjacent sources, so we can introduce a generator

(G
(1)
2→k)

2
j which acts on legs j, j + 1 of Xn and replaces them by (k − 2) new legs

G
(1)
2→k =

n+k−2∑
j=1

(G
(1)
2→k)

k
j , Yn+k−2 =

n+k−2∑
j=1

(Yn+k−2)kj =
n+k−2∑
j=1

(G
(1)
2→k)

k
jXn. (3.46)

The range of the sum may seem surprising at first sight, but it is the only way the resulting
expression can make sense: Both Xn and Yn+k−2 must be cyclic functions. Consequently, it does
not matter which pair of legs of Xn is chosen. The problem is that the contribution (Yn+k−2)kj
is not cyclic. Cyclicity of Yn+k−2 is only restored in a sum over all cyclic permutations of its
(n+ k − 2) legs. Evaluating the colour structures in (3.39) we can write the planar action as

(G
(1)
2→k)

k
jXn = − 1

16π3

∫
d4|4Λa d

4|4Λb d
4|4Λc Xn(1, . . . , j − 1, b, c, j + k, . . . , n+ k − 2)

·
[

sign(tkj − tk−1
j+1)G3(ā, b̄, j)A

(0)
k (a, j + 1, . . . , j + k − 1, c̄) log

tkj

tk−1
j+1

− sign(tkj − tk−1
j )A

(0)
k (b̄, j, . . . , j + k − 2, a)G3(c̄, ā, j + k − 1) log

tkj

tk−1
j

]
.

(3.47)

Similarly, the planar action of the third generator reads

(G
(1)
1→2)2

jXn =

∫
d4|4Λa sign(EjEj+1)G

(1)
3 (j, j + 1, ā)

·Xn(1, . . . , j − 1, a, j + 2, . . . , n+ 1). (3.48)

4 Superconformal Symmetry of MHV Amplitudes

Having established the general framework for superconformal symmetry of one-loop amplitudes,
we will confirm it using the simple set of planar MHV amplitudes AMHV. To avoid clutter, we
shall drop the label MHV from the amplitude functions A and functionals A throughout this
section.

4.1 One-Loop Correction

We summarise the construction and the properties of one-loop MHV amplitudes in App. B in
order to focus on the one-loop anomalies here. For MHV amplitudes the helicity-dependence is
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fully constrained by the symmetry. It forces the exact amplitude to equal the tree result times a
function of the particle momenta

A(`)
n = A(0)

n M (`)
n , A(0)

n =
δ4(P ) δ8(Q)

〈12〉 . . . 〈n1〉
, M (0)

n = 1. (4.1)

The one-loop amplitude in dimensional reduction reads [37]

M (1)
n = −

n∑
j=1

cε
ε2

(
t2j
−µ2

)−ε
+ 1

6
nπ2 − 1

2

n−3∑
k=3

n∑
j=1

Li2

(
1−

tk−1
j+1t

k+1
j

tkj t
k
j+1

)

− 1
2

n−3∑
k=2

n∑
j=1

log2
tkj

tk+1
j

+ 1
4

n−2∑
k=2

n∑
j=1

log2
tkj
tkj+1

. (4.2)

The loop function depends on invariants tkj associated to the overall momentum of k consecutive
particles starting at particle j introduced in (3.41). Furthermore cε = 1 +O(ε) is some function
of the dimensional reduction parameter ε and µ is the regularisation scale. It is perhaps worth
nothing that this formula is chosen to reproduce only the most “complicated” part of the loop
integral. That is to say, it does not reproduce the imaginary parts of the logarithm and diloga-
rithms. In order to define the function one must specify the appropriate Riemann sheet for all
values of the kinematic variables.

4.2 Measure Anomaly

First we will consider symmetry generators G which are anomaly-free at tree level, i.e. they
act as in the free theory G(0) = G

(0)
1→1 = Gfree. In particular, the dilatation generator D and

effectively also the superconformal boost S when acting on MHV amplitudes are of this form.
The proposed one-loop deformation (3.43) is simple: It acts on nearest neighbouring particles
only with a simple commutator form for the pairwise action in terms of the free generator Gfree

G(1) = G
(1)
2→2 =

n∑
j=1

(G
(1)
2→2)2

j , (G
(1)
2→2)2

j =

[
Gfree,

cε
ε2

(
t2j
−µ2

)−ε]
. (4.3)

The simplest non-trivial anomaly is the one of the generator of scale transformations D. The
free representation (2.13) and the one-loop deformation (3.44) read

Dfree
j = 1 + 1

2
λαj ∂j,α + 1

2
λ̃α̇j ∂̃j,α̇, (D

(1)
2→2)2

j = −2cε
ε

(
t2j
−µ2

)−ε
. (4.4)

The only term in (4.2) violating scaling invariance is the one containing the regularisation scale
µ. The scaling anomaly reads

D
(0)
1→1A

(1)
n = A(0)

n

n∑
j=1

2cε
ε

(
t2j
−µ2

)−ε
. (4.5)
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As anticipated the anomaly depends on the momenta of two adjacent particles only. Obvi-
ously, the one-loop deformation cancels precisely the anomaly and makes the one-loop amplitude
exactly invariant under (deformed) scaling transformations

D
(0)
1→1A

(1)
n + D

(1)
2→2A

(0)
n = 0. (4.6)

Next we consider the superconformal boost generator S given in (2.13) and (3.44)

(Sfree
j )αB = ∂j,B∂j,α, ((S

(1)
2→2)2

j)αB = −cε
ε

(
t2j
−µ2

)−ε
εαδ

〈j, j + 1〉
(
λδj+1∂j,B − λδj∂j+1,B

)
. (4.7)

In applying the free generator to A
(1)
n , the fermionic derivative will act on the δ8(Q) in A

(0)
n

because it is the only piece depending on the η’s. The bosonic derivative must act on the loop
function M

(1)
n because the tree-level amplitude A

(0)
n is invariant

(S
(0)
1→1)αBA

(1)
n =

n∑
j=1

(∂j,BA
(0)
n ) (∂j,αM

(1)
n ) =

n∑
j=1

∂A
(0)
n

∂QγB
λγj ∂j,αM

(1)
n . (4.8)

The second form uses the identity ∂j,BQ
αC = δCBλ

α
j , cf. (2.4). The combination λγj ∂j,α, summed

over all sites, equals the Lorentz generator Lγα up to its trace. The function M
(1)
n is a Lorentz

invariant, and hence it is annihilated by Lγα. Furthermore the trace contribution measures the
weight in λ’s which is the same as the scaling weight for the invariants tkj . The superconformal
boost anomaly is thus very similar to the scaling anomaly:

(S
(0)
1→1)αBA

(1)
n =

∂A
(0)
n

∂QγB

(
Lγα + 1

2
δγα

n∑
j=1

λδj∂j,δ

)
M (1)

n =
∂A

(0)
n

∂QαB

n∑
j=1

cε
ε

(
t2j
−µ2

)−ε
. (4.9)

We should compare this expression to the one-loop deformation. As above we make use of
the fact that the fermionic derivative ∂j,B only hits the fermionic delta function δ8(Q) and that
∂j,BQ

αC = δCBλ
α
j

(S
(0)
2→2)αBA

(0)
n = −

n∑
j=1

cε
ε

(
t2j
−µ2

)−ε
εαδ

〈j, j + 1〉
(
λδj+1∂j,B − λδj∂j+1,B

)
A(0)
n

= −
n∑
j=1

cε
ε

(
t2j
−µ2

)−ε
εαδ

λγjλ
δ
j+1 − λδjλ

γ
j+1

〈j, j + 1〉
∂A

(0)
n

∂QγB

= −
n∑
j=1

cε
ε

(
t2j
−µ2

)−ε
∂A

(0)
n

∂QαB
. (4.10)

Altogether we obtain the invariance condition

S
(0)
1→1A

(1)
n + S

(1)
2→2A

(0)
n = 0. (4.11)

Note that S is not anomaly-free at tree level [35]. In general one therefore expects the correction

term S
(0)
1→2 at tree level [35] and further corrections S

(1)
2→k loop level. This anomaly however does

not apply to MHV amplitudes which is why the treatment of S was relatively simple.
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4.3 Collinearities in Loops

For generators G which are anomalous at tree level, G(0) = G
(0)
1→1 +G

(0)
1→2, we have to work harder.

The prototype example when acting on MHV amplitudes is S̄. In addition to the homogeneous
G

(1)
2→2 corrections, there are inhomogeneous terms G

(1)
2→k, k ≥ 3

G(1) = G
(1)
2→2 +

n−2∑
k=3

G
(1)
2→k, G

(1)
2→k =

n∑
j=1

(G
(1)
2→k)

2
j (4.12)

When acting on the n − k + 2-particle amplitude A
(0)
n−k+2 they yield an n-particle function to

cancel the anomaly. The action of G
(1)
2→k on particles j, j + 1 of A

(0)
n−k+2 defined in (3.47) uses the

anomaly three-vertex G3 in (2.23).

In principle there can be loop corrections G
(1)
1→2 to the collinear anomaly G

(0)
1→2 itself. In

this section we assume for convenience that the particle momenta are in a general position and
pairwise linearly independent. The case of collinear external momenta will be considered in the
following section.

We now consider the conjugate superconformal generator S̄. We first act on A
(1)
n with the free

generator (S̄free
j )Bα̇ = ηBj ∂̃j,α̇ (2.13). The straight-forward variations will produce a lot of terms.

Let us therefore first consider the general variation of the loop function M
(1)
n under shifts of the

invariants tkj , and simplify it as far as possible. A very convenient expression for the variation of
(4.2) reads (see App. B.3 for some intermediate expressions)

δM (1)
n =

n∑
j=1

(
δ log

〈j − 1, j〉[j, j + 1]〈j + 1, j + 2〉
−µ2〈j, j + 1〉

)
cε
ε

(
t2j
−µ2

)−ε

−
n−3∑
k=2

n∑
j=1

(
δ log

Υ k+1
j−1

Υ kj

)
log

tk+1
j

tkj
. (4.13)

The symbol Υ kj is defined as the following Lorentz invariant combination (see (3.41) for the
definition of the fractional momentum P k

j )

Υ kj = 〈j|P k−1
j+1 |j + k] = εβδεα̇γ̇λ

β
j (P k−1

j+1 )δα̇λ̃γ̇j+k, (4.14)

and it originates from the following combination occurring frequently in δM
(1)
n , see App. B.3,

tkj t
k
j+1 − tk−1

j+1t
k+1
j = −Υ kj Υ n−kj+k . (4.15)

Note that this identity makes use of momentum conservation P k
j = −P n−k

j+k and the fact that
D = 4. In particular the latter is interesting because the above factorisation is crucial for
conformal symmetry which is special to four dimensions.

For simplifying the anomaly arising from the first line in (4.13) we note that S̄ acts on
conjugate spinors only. Thus for the purpose of S̄(0) we can replace the argument of the logarithm
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Figure 8: S̄ cut anomaly T kj .

by t2j = 〈j, j + 1〉[j + 1, j]. This yields

(S
(0)
1→1)Bα̇ log

t2j
−µ2

=
εα̇γ̇
(
ηBj λ̃

γ̇
j+1 − ηBj+1λ̃

γ̇
j

)
[j, j + 1]

. (4.16)

The action in the brackets of the second line in (4.13) can be evaluated and simplified using
spinor algebra:

(S̄
(0)
1→1)Bα̇ log

Υ k+1
j−1

Υ kj
= εα̇γ̇λ̃

γ̇
j+k

〈j − 1, j〉
Υ kj Υ

k+1
j−1

(
λ̃ε̇j+kεε̇κ̇(P

k
j )λκ̇ελδ(Q

k
j )
δB − tkjηBj+k

)
. (4.17)

Here Qk
j is a fractional supermomentum defined in (3.41). Altogether the conjugate supercon-

formal boost anomaly reads8

(S̄
(0)
1→1)Bα̇A

(1)
n = A(0)

n

n∑
j=1

(
(S̄

(0)
1→1)Bα̇ log

t2j
−µ2

)
cε
ε

(
t2j
−µ2

)−ε

− A(0)
n

n−3∑
k=2

n∑
j=1

(
(S̄

(0)
1→1)Bα̇ log

Υ k+1
j−1

Υ kj

)
log

tk+1
j

tkj
. (4.18)

The anomaly on the first line is obviously cancelled by the S̄
(1)
2→2 correction (3.43). The

remaining anomaly from the terms on the second line should be cancelled by terms from S
(1)
2→k in

(3.47). We write this as

((S̄
(1)
2→n−k)

k
j )
B
α̇A

(0)
k+2 = −1

2
(T kj−k)

B
α̇ log

tn−kj

tn−k−1
j+1

+ 1
2
(T n−k−1

j )Bα̇ log
tn−kj

tn−k−1
j

(4.19)

8Essentially identical formulae were found by [36] and [43] in their analysis of the S̄ (or correspondingly dual
Q̄) anomaly of the cuts of MHV and NMHV amplitudes.
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where T kj is the on-shell triangle integral, see Fig. 8 for the configuration of momenta,

(T kj )Bα̇ =
1

8π3

∫
d4|4Λa d

4|4Λb d
4|4Λc sign(tkj − tk+1

j ) S̄3(b̄, ā, j + k)Bα̇

· A(0)
k+2(a, c, j, . . . , j + k − 1)A

(0)
n−k+1(c̄, b, j + k + 1, . . . , j + n− 1). (4.20)

We carry out the lengthy calculation for T in App. C, the final result can be related to the
quantity in (4.17)

(T kj )Bα̇ = A(0)
n εα̇γ̇λ̃

γ̇
j+k

(
λ̃κ̇j+kεκ̇λ̇(P

k
j )δλ̇εδε(Q

k
j )
εB − tkjηBj+k

)〈j − 1, j〉
Υ kj Υ

k+1
j−1

= A(0)
n (S̄

(0)
1→1)Bα̇ log

Υ kj

Υ k+1
j−1

. (4.21)

Summing over all contributions, expanding the logarithms and reordering some of the sums, we
find the contribution of the remaining deformation

n−3∑
k=2

(S̄
(1)
2→n−k)

B
α̇A

(0)
k+2 = +

n−3∑
k=2

n∑
j=1

(T kj )Bα̇ log
tk+1
j

tkj

= A(0)
n

n−3∑
k=2

n∑
j=1

(
(S̄

(0)
1→1)Bα̇ log

Υ kj

Υ k+1
j−1

)
log

tk+1
j

tkj
. (4.22)

By comparison to the above results we find proper invariance under deformed conjugate super-
conformal boosts

S̄
(0)
1→1A

(1)
n + S̄

(1)
2→2A

(0)
n +

n−3∑
k=2

S̄
(1)
2→n−kA

(0)
k+2 = 0. (4.23)

4.4 Splitting Anomaly

Finally we consider the terms arising when the generator acts on the tree-level prefactor. As
described previously, when the conjugate superconformal generator is applied to the tree-level
MHV amplitude, it will see the holomorphic poles as anomalies. This produces a delta-function
which forces certain momenta in the loop integral to become collinear, effectively setting some
t2k = (pk + pk+1)2 to zero. This in turn corresponds to considering the collinear limits of the
one-loop amplitude which is known to be governed by the one-loop splitting function, rS [37],

S̄(0)A(1)
n =

(
S̄(0)A(0)

n

)
M (1)

n + . . .

∝ δ(2)(〈k, k + 1〉)A(0)
n−1M

(1)
n + . . .

= δ(2)(〈k, k + 1〉)A(0)
n−1

(
M

(1)
n−1 + rS

)
+ . . . . (4.24)

For the appropriate definitions of the collinear limit rS is the same function as was found in
the analysis of the unitarity cuts, Sec. 3.4. The first term is simply cancelled by the tree level
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deformation S̄
(0)
1→2 while the second are cancelled by S̄

(1)
1→2. Combining this with the previous

terms we find the full deformation of the conjugate superconformal generator at one loop

S̄
(0)
1→1A

(1)
n + S̄

(0)
1→2A

(1)
n−1 + S̄

(1)
1→2A

(0)
n−1 + S̄

(1)
2→2A

(0)
n +

n−3∑
k=2

S̄
(1)
2→n−kA

(0)
k+2 = 0. (4.25)

As was discussed in Sec. 3.4, and further in App. B.4, the exact definition of the collinear
is subtle. There is an inherent ambiguity related to the order in which one takes the ε → 0
and collinear limits. Different prescriptions will give different results, however as long as we
are consistent this is accounted for by the appropriate definition of rS that appears in both the
deformed generator and the collinear limit of the amplitude.

5 Invariance of the Six-Point NMHV Amplitude

The invariance of one-loop amplitudes with respect to the deformed generators, as described in
Sec. 3, is designed to apply to generic amplitudes not just MHV. To check that this is indeed
the case and to test the specifics of the proposal we examine the simplest non-trivial NMHV
amplitude i.e. the six-point one-loop NMHV amplitude, A

(1)
6;NMHV.

A convenient, manifestly supersymmetric, expression for this amplitude was given in [13]
(see [38] for earlier calculations of the component amplitudes). It is written in terms of the
dual-superconformal invariants, Rrst, which are polynomials in the η’s of order four,

A
(1)
6;NMHV = A

(0)
6;MHV

[
R146F

[1]
6 + cyclic

]
. (5.1)

The functions F
[i]
6 depend on the kinematic invariants tkj and are combinations of two-mass hard

and one-mass scalar box functions. We give explicit expression for the Rrst’s and F
[i]
6 ’s in App. D.

For simplicity we will focus on the variation of this amplitude with respect to the generator
S̄; for 6 legs the action of S follows by conjugation. As in previous sections we will show that the
non-trivial action of the tree level S̄

(0)
1→1 is cancelled by the deformations constructed previously.

That is to say,

S̄
(0)
1→1A

(1)
6;NMHV + S̄

(1)
2→2A

(0)
6;NMHV +

3∑
k=2

S̄
(1)
2→n−kA

(0)
k+2;NMHV = 0 . (5.2)

In this equation we are ignoring the anomaly in the tree-level amplitudes; these terms are can-
celled by the deformations, S̄

(0)
1→2 and S̄

(1)
1→2, corresponding to the splitting function. We will thus

focus on the variation of the loop integral portion of the amplitude.

5.1 Variation

Using the explicit expressions for the functions F
[i]
6 , (D.6), one can straightforwardly calculate

their variation. Let us first consider the terms in the variation with log cuts in the three-particle
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channels, say t31. These terms occur only multiplying the R146 and R413 structures, for example,

S̄
(0)
1→1A

(1)
6;NMHV = A

(0)
6;MHVR146 log t31

(
S̄

(0)
1→1 log

[t21t22
t23t

2
6

])
+ . . . . (5.3)

In principle one could completely expand in powers of the η’s and consider the various terms
independently. It turns out to be more convenient to leave the R’s intact and to consider the
coefficients of the various ηARrst terms. However, the R’s are not independent but rather satisfy
various identities. For example, for the six-point amplitude one can use the identity (D.5)
to remove one of the six R’s and so one could expect cancellations between different terms.9

Nonetheless, through a judicious choice we will be able to consider the coefficients of the ηARrst

terms separately. In fact, for the case of the three-particle channel, the coefficients of ηAR146

and ηAR413 are independent as can seen by noting that the first term will give rise to terms,
once we include the overall fermionic supermomentum delta-function, such as ηAη

4
4η

4
5η

4
6 which

cannot arise from the second term. Concretely, we focus on the coefficient of R146 and using the
fermionic delta-functions to remove η1, η3 and η5. We find

A
(0)
6;MHVR146S̄

(0)
1→1 log

[t22
t23

]
= A

(0)
6;MHVR146

λ̄3〈1|P 3
1 |4]

〈13〉[23][34][46]
(η2[46] + η4[62] + η6[24]) ,

A
(0)
6;MHVR146S̄

(0)
1→1 log

[t21
t26

]
= A

(0)
6;MHVR146

λ̄1〈3|P 3
3 |6]

〈13〉[12][46][61]
(η2[46] + η4[62] + η6[24]) .

(5.4)

Combining these terms we find the complete variation in the three-particle channel t31 with
coefficient R146. It is interesting to note that this calculation is essentially the same as that
performed in [34] which used the holomorphic anomaly of the collinearity operator to fix the box
coefficients of the split-helicity NMHV amplitudes. Indeed the coefficient of η2 in S̄ is exactly the
collinearity operator for particles 1, 2 and 3 used in [34]. All the other three particle cuts can be
found using cyclicity.

Turning to the two-particle channel cuts of the variation, for example cuts in the variable t21,
we choose to remove R413 using (D.5). The resulting expression for the variation of the amplitude
in terms of the remaining R’s is

S̄
(0)
1→1A

(1)
6;NMHV = A

(0)
6;MHV

(
(R146 +R362 +R524) S̄

(0)
1→1

[
− cε
ε2

(
t21
−µ2

)−ε ]
− log

t21
−µ2

R146 S̄
(0)
1→1 log

[t22
t23

]
− log

t21
−µ2

R635 S̄
(0)
1→1 log

[t26
t25

])
+ . . .

9In fact, if we use the overall supermomentum delta-function and the fermionic delta-function in the R to
remove three of the ηA’s we have fifteen terms, ηARrst, in the variation. If we alternatively use only the super-
momentum condition we get four η’s times six R’s. Now for each R we have an additional constraint between the
η’s – six constraints – while for each η we have a relation between the various R’s – four constraints – giving a
total of ten constraints and hence only fourteen independent terms. Thus if these constraints are not degenerate
we find that there must be at least one additional relation between the various terms.
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Figure 9: Anomaly for six-point NMHV with coefficient R146.
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Figure 10: Anomaly for six-point NMHV with coefficient R635.

= A
(0)
6;NMHVS̄

(0)
1→1

[
− cε
ε2

(
t21
−µ2

)−ε ]
− A

(0)
6;MHV log

t21
−µ2

(
R146 S̄

(0)
1→1 log

[t22
t23

]
+R635 S̄

(0)
1→1 log

[t26
t25

])
+ . . . .

(5.5)

Looking at this term we can immediately see that the first term is the same divergent structure
as appeared for the MHV amplitudes. As was the case there, this term corresponds to the S̄

(1)
2→2

deformation due to the measure correction. The subsequent terms are given by (5.4) and its

cyclic permutation. We expect these terms to be cancelled by S̄
(1)
2→k terms arising from collinear

anomalies in loops and, as we will see, indeed this is the case.

5.2 Deformations

The deformation due to the measure factor, S̄
(1)
2→2, is straightforwardly seen to be the same for

NMHV amplitudes as for the MHV ones. It cancels the divergent terms (and the finite parts
grouped with them). Similarly, the contributions for the splitting function, at tree and one-loop
level, are the same due to the universality of the splitting function and it is well known that the
amplitudes have the correct collinear behaviour. Thus we move to consider the contributions
from triangle diagrams where the anomaly sits inside the loop, the analogues of Fig. 8. These
arise from the deformation

3∑
k=2

S̄
(1)
2→n−kA

(0)
k;MHV =

3∑
k=2

6∑
j=1

T kj log
tkj

tk+1
j

, (5.6)
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where, T kj , are on-shell triangle integrals. Let us first calculate the coefficient of the three-particle
channel cuts in the variable t31 which are proportional to R146 i.e. the terms needed to cancel (5.3).
That is we wish to evaluate

(T 2
1 − T 3

1 ) log t31 (5.7)

where the triangle integrals are represented in Fig. 9 and, for example,

T 2
1 =

1

(2π)3

∫
(d4|4Λ)3 sign(t21 − t31)S̄3(b̄, ā, 3)A

(0)
4;MHV(a, c, 1, 2)A

(0)
5;NMHV(c̄, b, 4, 5, 6). (5.8)

As for the MHV case the delta-functions enable one to trivially evaluate these expressions and
indeed the calculations are quite similar. It can then be shown that

T 2
1 = A

(0)
6;MHVR146

〈1|P 3
1 |4]λ̄3

〈13〉[23][34][46]
(η2[46] + η4[26] + η6[24]) ,

−T 3
4 = A

(0)
6;MHVR146

〈3|P 3
3 |6]λ̄1

〈13〉[12][46][61]
(η2[46] + η4[26] + η6[24]) , (5.9)

which are identical to (5.4) and so cancel the variation (5.3).
Turning to the two-particle channels in the variable t21 we see that they can only arise with

coefficients R146, from the first triangle diagram in Fig. 9, and R635, from the triangle diagram
Fig. 10. From (5.9), and its appropriate permutation, it is clear that these terms will indeed cancel
the relevant terms in the variation (5.5). The remaining two-particle channels similarly follow
by use of cyclicity. Thus we see that the deformations constructed previously also annihilate the
six-point NMHV amplitude.

6 Yangian Symmetry at One Loop

In addition to the standard super-conformal symmetries it has recently become clear that planar
scattering amplitudes in N = 4 transform covariantly under a “dual” superconformal algebra
[13]. First hints towards this symmetry appeared at the level of loop integrals contributing to
the amplitudes [9, 59]. This surprising additional symmetry of the planar theory has its origin
in the ordinary conformal symmetry of the dual Wilson loop description of MHV amplitudes
[11, 12]. Tree amplitudes have been proven to be covariant with respect to dual superconformal

transformations [14,15]. At loop level the dual conformal boost K̃αα̇ is naively broken and picks
up an anomaly term whose form, however, was conjectured to be under control to all loop orders
in [12, 13]. Recently it was shown that all one-loop N = 4 SYM scattering amplitudes indeed
obey the dual conformal anomaly relation [44], following earlier results on MHV and NMHV
amplitudes [13,60,14,42,61].

The dual superconformal symmetry can be made manifest by introducing new dual coordi-
nates on which the dual symmetry generators act locally

λβi λ̃
α̇
i = xβα̇i − x

βα̇
i+1 , λβi η

A
i = θβAi − θ

βA
i+1 (6.1)
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Figure 11: Action of the Yangian generator Ĝ on the colour-ordered amplitude A at
tree level. The action is defined as the bi-local insertion of two superconformal generators
G1 and G2, the former acting to the left of the latter. To that end one has to define an
origin for the colour-ordered amplitude (dotted line).

and one makes the identifications xn+1 := x1, θn+1 := θ1, [13]. At tree level it was shown in [20]
that this additional symmetry can be understood to lift the conventional superconformal symme-
try algebra psu(2, 2|4) to a Yangian symmetry Y[psu(2, 2|4)]. The level-one Yangian generators

Ĝ are given by the standard coproduct rule for evaluation representations with homogeneous
evaluation parameters, cf. Fig. 11,

ĜM = fKLM

∑
1≤k<`≤n

Gk,KG`,L . (6.2)

The level-one generators Ĝ thereby satisfy

[GK , ĜL} = fMKL ĜM . (6.3)

Making use of the invariance of tree-amplitudes with respect to the locally acting central charge,
Ci, it can be shown that this representation is compatible with the cyclicity of the amplitudes [20].
Furthermore by means of the Serre relations and the covariance of the tree-level amplitudes under
the “dual” conformal generators one can show that the amplitudes are indeed invariant under
the full Yangian algebra [20].

In the following we determine the one-loop deformation of the Yangian generator P̂αα̇ and
Q̂αA .

6.1 Dual Conformal Boost alias Level-One Momentum

Indeed by virtue of (6.3) it suffices to construct the one-loop deformation of P̂αα̇ as all the other
level-one Yangian generators follow by commutation with level-zero ones.
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To begin with, let us then quantify the relation between dual conformal boost

K̃αα̇ =
n∑
i=1

[
xαβ̇i xα̇βi

∂

∂xββ̇i
+ xα̇βi θαBi

∂

∂θββ̇i
+ xαα̇i

]
(6.4)

and the level-one Yangian

(P̂(0))αα̇ =
∑

1≤i<j≤n

[(
Lαi γ δ

α̇
γ̇ + L̄α̇i γ̇ δ

α
γ + D

(0)
i δαγ δ

α̇
γ̇

)
Pγγ̇
j + QαC

j Q̄α̇
iC − (i↔ j)

]
(6.5)

at tree-level [20]. Note that both K̃αα̇ and P̂αα̇ annihilate A
(0)
n . Following [20] one may solve the

new dual coordinates in terms of the original ones via (6.1)

xαα̇i = xαα̇1 −
∑

1≤j<i

λαj λ̃
α̇
j , θαAi = θαA1 −

∑
1≤j<i

λαj η
A
j , (6.6)

and rewrite the dual conformal boost (6.4) as a differential operator acting in the original on-shell
superspace coordinates {λi, λ̃i, ηi} to find

K̃αα̇ = 1
2
P̂αα̇ +

∑
i

(
Pαα̇
i Ci

)
− 1

2
Pαα̇

− 1
2
Pγγ̇

(
Lαγ δ

α̇
γ̇ + L̄α̇γ̇ δ

α
γ + D δαγ δ

α̇
γ̇

)
− 1

2
QαBQ̄α̇

B

+ xγγ̇1

(
Lαγ δ

α̇
γ̇ + L̄α̇γ̇ δ

α
γ + D δαγ δ

α̇
γ̇

)
+ θ1B

α Q̄α̇
B , (6.7)

where the only non-local structure on the right-hand side resides in the level-one Yangian momen-
tum generator. We now make use of the full one-loop anomaly relation [44] in our conventions

K̃αα̇A(1)
n = 2A(0)

n

n∑
i=1

xαα̇i+1

cε
ε

(
x2
i,i+2

−µ2

)−ε
= −2A(0)

n

[ ∑
1≤j<i≤n

pαα̇j
cε
ε

(
t2i
−µ2

)−ε
+

n∑
i=1

pαα̇i
cε
ε

(
t2i
−µ2

)−ε
− xαα̇1

n∑
i=1

cε
ε

(
t2i
−µ2

)−ε]
(6.8)

where xi,j := xi−xj. Now acting with (6.7) on the one-loop amplitude, taking into account that

the tree-level generators {Lαβ, L̄α̇β̇,QαB, Q̄α̇
B} all annihilate A

(1)
n as well as the local generator

Ci K̃
αα̇ = 0 and that (3.44)

D(0)A(1)
n = 2A(0)

n

n∑
j=1

cε
ε

(
t2j
−µ2

)−ε
(6.9)
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one easily computes the action of the tree-level Yangian generator on the one-loop amplitude

(P̂(0))αα̇A(1)
n = −2

[ ∑
1≤j<i≤n

(
pαα̇j

cε
ε

(
t2i
−µ2

)−ε
− (i↔ j)

)
+

n∑
i=1

pαα̇i
cε
ε

(
t2i
−µ2

)−ε]
A(0)
n , (6.10)

remarkably recovering a bi-local structure again. We hence conclude that the one-loop deforma-
tion of P̂αα̇ takes the simple form

(P̂(1))αα̇ = −

[ ∑
1≤j<i≤n

(
Pαα̇
j (D

(1)
2→2)2

i − (i↔ j)
)

+
n∑
i=1

Pαα̇
i (D

(1)
2→2)2

i

]
. (6.11)

where we have inserted the the one-loop deformation of the dilatation operator of (3.44). Rewrit-

ing P̂
(1)
αα̇ in a fashion of keeping the bi-local terms free of contact terms we have

(P̂(1))αα̇ = −

[ ∑
1≤j<i≤n

(
Pαα̇
j (D

(1)
2→2)2

i − Pαα̇
i (D

(1)
2→2)2

j−1

)
+

n∑
i=1

(Pαα̇
i − Pαα̇

i+1) (D
(1)
2→2)2

i

]
. (6.12)

Now the following curious picture emerges: Recalling the split of the one-loop amplitude into a
finite and a divergent piece as done in (3.37) but here restricted to the planar limit (3.42)

A(1)
n = Ẑ

(1)
2→2A

(0)
n + Ã(1)

n , with Ẑ
(1)
2→2 = −

n∑
j=1

cε
ε2

(
t2j
−µ2

)−ε
, (6.13)

we can identify the bi-local deformation of P̂
(1)
αα̇ in (6.12) as arising from the action of the tree-level

generator on Ẑ
(1)
2→2

[
(P̂(0))αα̇, Ẑ

(1)
2→2

]
=

n−1∑
i=2

[∑
1≤j<i

Pj (D
(1)
2→2)2

i −
∑
i≤j≤n

Pj (D
(1)
2→2)2

i−1

]
−
(
Pαα̇
n − Pαα̇

1

)
(D

(1)
2→2)2

n

=
n∑
i=1

[∑
1≤j<i

Pj (D
(1)
2→2)2

i −
∑
i≤j≤n

Pj (D
(1)
2→2)2

i−1

]
. (6.14)

Conversely, the last local term in (6.12) is nothing but the anomaly of Ã
(1)
n once spelled out in

the dual coordinates

(P̂(0))αα̇ Ã(1)
n = 2

n∑
i=1

xαα̇i,i+1 log

(
x2
i,i+2

x2
i−1,i+1

)
A(0)
n = −(P̂

(1)
2→2)αα̇A(0)

n , (6.15)

with

(P̂
(1)
2→2)αα̇ = −

n∑
i=1

(Pαα̇
i − Pαα̇

i+1) (D
(1)
2→2)2

i . (6.16)
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In conclusion we can cleanly separate the deformation from the divergent measure and a genuine
one-loop anomaly

(P̂(1))αα̇ =
[
(P̂(0))αα̇, Ẑ

(1)
2→2

]
+ (P̂

(1)
2→2)αα̇ . (6.17)

While perhaps a mere curiosity it is worth noting that one can find the anomaly from the action
of a bi-local operator on Ẑ

(1)
2→2,

(P̂
(1)
2→2)αα̇ =

∑
1≤i<j≤n

[
2
(
Lαi γ δ

α̇
γ̇ + L̄α̇i γ̇ δ

α
γ

)
Pγγ̇
j − (i↔ j), Ẑ

(1)
2→2

]
. (6.18)

Effectively the first term in (6.17) is sufficient to reproduce the complete P̂(1) if the sign of L and

L̄ in P̂(0), cf. (6.5), is flipped.

6.2 The All-Loop Form of D and P̂

This insight together with the all-loop conjecture for the form of the dual conformal anomaly
of Drummond, Henn, Korchemsky and Sokatchev [13] then leads to a transparent conjecture
for the all-loop form of the dilatation and Yangian level-one momentum generators. Due to the
exponentiation of IR singularities the all-loop expression for the planar n-point amplitudes takes
the form

An(g2) = exp
(
Ẑ2→2(g2, ε)

)
Ãn(g2) , (6.19)

with Ãn being the all-loop finite piece, and Ẑ2→2 is the logarithm of the all-loop IR divergences.
The form of this functions is well studied with the leading term for planar amplitudes being given
by10

Ẑ2→2(g2, ε) = 1
4
Γ (g2, ε) Ẑ

(1)
2→2(ε) +O(ε0) , (6.20)

where Γ (g2, ε) contains the cusp dimension Γcusp(g2) = g2 +O(g4) as well as the collinear dimen-
sion Γcoll(g

2) = O(g4)
Γ (g2, ε) = Γcusp(g2) + εΓcoll(g

2) +O(ε2). (6.21)

The subleading in ε terms are scheme dependent. Acting on this with tree-level D yields

D(0)An = 1
4
Γ (g2, ε)

[
D(0), Ẑ

(1)
2→2

]
An = −1

4
Γ (g2, ε) D(1)An (6.22)

hence the all-loop planar dilatation operator is simply

D(g2) = D(0) + 1
4
Γ (g2, ε) D(1), (6.23)

such that DAn = 0.

10In the following we shall use a sloppy notation where we disregard the effect of the loop order on the ε-
dependence. This dependence is very systematic and can be implemented easily by the rule ε → `ε at ` loops.
For a review of the all-loop structure of N = 4 SYM amplitudes including their IR divergences see e.g. [45] and
the many papers referenced therein.
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Similarly, the all-loop form of the level-one Yangian generator P̂αα̇ can be established. For
this we observe that the action of the tree-level (P̂(0))αα̇ results in

(P̂(0))αα̇An = 1
4
Γ (g2, ε)

[
(P̂(0))αα̇, Ẑ

(1)
2→2

]
An + exp

(
Ẑ2→2

)
(P̂(0))αα̇ Ãn . (6.24)

Now by virtue of the conjectured form [13] of the all-loop dual-conformal anomaly we note

(P̂(0))αα̇ Ãn = 2 K̃αα̇ Ãn = 1
2
Γ (g2, ε)

n∑
i=1

xαα̇i,i+1 log

(
x2
i,i+2

x2
i−1,i+1

)
Ãn

= −1
4
Γ (g2, ε) (P̂

(1)
2→2)αα̇ Ãn , (6.25)

where we have made use of the fact that the discrepancy terms between (P̂(0))αα̇ and 2K̃αα̇ in
(6.7) are inactive when acting on Ã. Hence we know all terms on the right-hand-side of (6.24).

This enables us to also conjecture the all-loop form of the level-one Yangian generator P̂αα̇

P̂(g2)αα̇ = (P̂(0))αα̇ + 1
4
Γ (g2, ε) (P̂(1))αα̇, (6.26)

whose structure is dictated by the one-loop deformation, as is also the case for the dilatation
operator (6.23).

6.3 Dual Superconformal Boosts and Bi-Local Generators

Invariance of the amplitude under the dual superconformal boosts S̃ alias the level-one super-
symmetry generators Q̂ follows straight-forwardly from invariance under P̂ and S̄ using (6.3)[

S̄A
β̇
, P̂γδ̇

]
= −δδ̇

β̇
Q̂γA. (6.27)

Nevertheless, it is instructive to see how the one-loop deformation of Q̂ acts qualitatively. In
particular, we have seen in Sec. 6.2 that P̂ receives only relatively simple corrections, but here
length-changing interactions as discussed in Sec. 3.3 enter. This follows directly from the above
commutator which introduces them via S̄.

Let us compare the structure of the one-loop deformation of P̂ in (6.12) with the tree-level
generator in (6.5): For the bi-local contribution in (6.12) one promotes all instances of D in
(6.5) to its one-loop correction and drops the other terms which involve only super-Poincaré
generators L, L̄,P,Q, Q̄. In other words, the bi-local contribution is obtained from a perturbative
generalisation of (6.2)

ĜM = fKLM GK ⊗GL + Ĝloc,M := fKLM

∑
k�`

Gk,K G`,L +
∑
k

Ĝloc,k,M , (6.28)

where GK are the perturbative generalisations of the superconformal generators. The local
contributions Ĝloc are needed to specify the action of the bi-local generators when the constituent
operators overlap. When expanded to one loop one obtains, cf. Fig. 12,
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Figure 12: Action of the Yangian generator Ĝ on the colour-ordered planar amplitude
A at one loop. The standard contribution of Ĝ(1) is the same as at tree level where one
constituent superconformal generators G1,G2 is replaced by its one-loop deformation.

Furthermore Ĝ
(1)
loc represents the action when the constituent generators overlap. Here,

one may have to specify separately how Ĝ
(1)
loc acts on the two particles separated by the

origin.

Ĝ
(1)
M = fKLM G

(1)
K ⊗G

(0)
L + fKLM G

(0)
K ⊗G

(1)
L + Ĝ

(1)
loc,M . (6.29)

In the case of P̂ the only bi-local deformation originates from the dilatation generator D, and it
is precisely of this form. Moreover, the anomaly P̂

(1)
2→2 equals the local term P̂

(1)
loc.

The structure (6.29,6.28) is well-known for perturbative Yangians, cf. [62–64]. Importantly,
the bi-local term is stable under the adjoint action (6.3) provided that the superconformal algebra
is satisfied. The local terms serve as a regularisation and are more sensitive to the details of the
algebra and its deformation.

For the correction to the dual superconformal boost Q̂ these considerations imply the structure

(Q̂(1))Aβ = Pβγ̇ ∧ (S̄(1))Aγ̇ + 1
2
QAβ ∧D(1) + Q̂Aβ

loc , (6.30)

where A∧B := A⊗B −B ⊗A. This expression has length-preserving contributions from S̄
(1)
2→2,

D
(1)
2→2 and Q̂Aβ

loc,2→2, but there are also length-changing contributions from S̄
(1)
2→k and Q̂Aβ

loc,2→k, cf.
Sec. 3. The bi-local contributions follow directly from the correction to the superconformal gen-
erators, whereas the local terms follow from the commutator (6.27). We refrain from presenting
the results of such a computation as the result is guaranteed to annihilate all amplitudes anyway.

Similar considerations apply for ̂̄Q which has a structure analogous to Q̂ but does not derive
from one of the dual superconformal generators. The remaining level-one generators follow the
same pattern, but they all involve K which has a yet more complicated structure than S and S̄.

We have not yet addressed the issues regarding the algebra of the deformed generators and
while we postpone a detailed consideration to future work a few comments are in order. Due to
the choice of regulator all the deformations respect the manifest super-Poincaré algebra. For the
special conformal and fermionic conformal generators the situation is much less clear. Of course,
the algebra is trivially satisfied on the space of amplitudes however on larger spaces it is remains
non-trivial to demonstrate closure. Already at tree-level the algebra is seen to close only up
to field dependent gauge transformations [35] and demonstrating closure at one-loop remains an
open problem. Furthermore, to establish the existence of a Yangian algebra one must additionally
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show that the deformed generators satisfy the Serre relations. It is not clear that Yangian algebra
will be satisfied, and it is very possible that this is a subtle issue. Note that some evidence in
favour of this point of view was already found in a study of the perturbative Yangian [63]. As a
point of comparison, at strong coupling the scattering amplitudes are described by open strings
in the AdS geometry which, being essentially a coset sigma model, are known to possess an
infinite family of non-local charges [7]. While the full quantum algebra of these charges is not
currently known we point out that even at the classical level there is likely an inherent ambiguity
in their algebra. That this is so was pointed out for the Yangian symmetries of the non-linear
sigma model by [65] and discussed by e.g. [66]. Essentially, due to the non-ultralocal terms in the
current algebra, one must define a regularisation for the charges as integrals over densities, taking
particular care with the end points, and different regularisations can lead to different terms on
the r.h.s. of (6.3).

7 Propagator Prescriptions

In this section we comment on the exact definition of the amplitudes we have analysed. This will
allow us to clarify the relationship to a different proposal [43] of how to deform the symmetry
generators at loop level. As it appears to be different already at tree level, we shall start there
and later continue at loops.

For simplicity let us consider a generator G which has only deformations of the type 1 → 2
at tree level. In practice this can be one of the two superconformal boost generators S or S̄, but
not the conformal boost K.

7.1 Tree Level

In [35] a deformation of the free representation was proposed in order to make all tree-level
amplitudes exactly invariant. In [43] it was subsequently shown that additional terms are needed
for exact invariance of the tree-level S-matrix. Here we shall illustrate the differences between
the two proposals and show that they are in fact compatible.

In [35] it was shown that the amplitude generating functional AP is annihilated by the de-
formed representation of the generator G = G1→1 + G1→2 (see Fig. 13)

(G1→1 + G1→2)AP = 0. (7.1)

In [43] it was shown that additional deformations are needed, namely G = G1→1 + G1→2 +
G2→1 + G3→0. The deformations G2→1 and G3→0 are almost the same as G1→2, but they have
a different distribution of in and out legs. Moreover, the connected amplitude Aiε itself is not
invariant, but only its exponential

(G1→1 + G1→2 + G2→1 + G3→0) exp(iAiε) = 0. (7.2)

While Aiε is a connected amplitude, the expansion of the exponential yields disconnected graphs.
The additional generators G2→1 and G3→0 can now connect two or three subgraphs into a single
component. The invariance equation is depicted in Fig. 14.
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Figure 13: Invariance condition for tree amplitudes with principal part prescription.
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Figure 14: Invariance condition for tree amplitudes with iε prescription.

It appears that the two invariance equations differ by terms which are non-zero in general
and thus only one of them could be true. However, one has to be careful about the precise
definition of the amplitudes considered in each case. The first equation (7.1) assumes a principal
value prescription for all internal propagators of the tree amplitude AP. Conversely, the second
equation (7.2) requires use of an iε prescription for the internal propagators of Aiε. Indeed, this
minor change is what accounts for the difference in the two equations.

Consider, e.g., an amplitude with 7 legs: It has poles corresponding to an internal propagator
going on shell. The residue is given by the product of two subamplitudes with 4 and 5 legs,
respectively. Now, the difference between a principal value and an iε prescription is given by the
same residue supported by a delta function forcing the internal particle on shell

1

p2 ∓ iε
=

1

p2
± iπδ(p2). (7.3)

Consequently there is the relation Aiε,7 = AP,7 + iA4—A5 which is illustrated in Fig. 15. The
point is that the AP,7 is exactly annihilated by G1→1 + G1→2, but A4—A5 requires an extra
contribution from G2→1 acting on i

2
(A4)2, i.e. the third term in Fig. 14.

How do the extra anomalies in Aiε arise in practice? When the free representation G1→1 acts
on a rational function, there can be delta-function contributions localised at the poles. Collinear
singularities yield such anomalies which are subsequently cancelled by G1→2. Secondly, there
are multi-particle singularities, but these do not cause anomalies, whether they are evaluated in
principal value or in iε prescriptions. The third type of singularity can cause anomalies, but it is
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Aiε,7 = AP,7 + i A4 A5

Figure 15: Reduction of tree amplitude with iε prescription to combinations of ampli-
tudes with principal value prescription.
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Figure 16: Relation between amplitudes with iε prescription and amplitudes with
principal part prescription at tree level.

spurious and cancels in the complete amplitude because the residues cancel. Almost! In the iε
prescription there are some left-over terms with delta function support. These are the anomalies
to be cancelled by G2→1 and G3→0 acting on disconnected amplitudes.

It turns out that the two invariance equations are perfectly compatible, and they have the
same physical and mathematical implications. Is one of the two preferable over the other? One
the one hand, the amplitude Aiε with iε prescription may appear to be a more natural and more
physical object than the amplitude AP with principal value prescription. On the other hand, the
symmetry relations for AP are simpler.

In the remainder of this section we will explore the formal relationship between the various
quantities in order to gain a clearer understanding of amplitudes and their invariance condi-
tions. Using the above relationship (7.3) between propagators it is clear that amplitudes with
iε prescription can be expanded in terms on-shell connections of amplitudes with principal part
prescription, see Fig. 16. The prefactors are the natural symmetry factors associated to the
graphs. Note that we have terminated the expansion at four powers of AP and at tree level. This
relation can be formalised as follows

S[J ] = exp
(
iAiε[J ]

)
= exp(Ĉ) exp

(
iAP[J ]

)
, Ĉ =

1

4

∫
d4|4Λ J̌a(Λ)J̌a(Λ̄). (7.4)

In words it says that the S-matrix is given by a collection of arbitrarily many amplitudes Aiε.
Equivalently, it is given by a collection of arbitrarily many amplitudes AP with arbitrarily many
on-shell connections Ĉ between the legs.

We start with the statement of superconformal symmetry at tree level [35]11

(G1→1 + G1→2)AP[J ] = 0. (7.5)

11Note that AP[J ] uses principal part propagators. As loop corrections require at least one on-shell propagator,
AP[J ] terminates at tree level. Thus the following argument (which is analogous to the one used in [43]) formally
applies to all loops when neglecting effects of regularisation.
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Now we would like to transform this equation to a statement for S. The generators G1→1 and
G1→2 are linear in derivatives and therefore exp(iAP) = exp(−Ĉ)S is equally invariant. We
conclude that S is invariant under the same generator conjugated by exp(Ĉ)

exp(Ĉ)
(
G1→1 + G1→2

)
exp(−Ĉ)S[J ] = 0. (7.6)

This is precisely the claim of [43]. Namely, one can easily confirm that the free generator is
invariant under conjugation

G1→1 = exp(Ĉ)G1→1 exp(−Ĉ). (7.7)

This translates to the statement that on-shell contractions respect free superconformal symmetry.
Furthermore the deformations obey

G1→2 + G2→1 + G3→0 = exp(Ĉ)G1→2 exp(−Ĉ). (7.8)

In other words G2→1 = [Ĉ,G1→2] and G3→0 = 1
2
[Ĉ,G2→1] which is essentially how the additional

deformations were derived in [43]. Starting with G1→2 in (2.21) we find in agreement with [43]

G1→2 =
1

2

∫
(d4|4Λ)3 sign(E1E2)Gabc

123J
a
1J

b
2 J̌

c
3̄ ,

G2→1 =
[
Ĉ,G1→2

]
=

1

2

∫
(d4|4Λ)3 sign(E1E2)Gabc

123J
a
1 J̌

b
2̄ J̌

c
3̄

= −1

2

∫
(d4|4Λ)3 θ(E2E3)Gabc

123J
a
1 J̌

b
2̄ J̌

c
3̄ ,

G3→0 = 1
2
[Ĉ,G2→1] = −1

8

∫
(d4|4Λ)3 θ(E2E3)Gabc

123J̌
a
1̄ J̌

b
2̄ J̌

c
3̄

= − 1

24

∫
(d4|4Λ)3Gabc

123J̌
a
1̄ J̌

b
2̄ J̌

c
3̄ . (7.9)

The transformations between the sign and step factors makes use of permutation symmetries and
momentum conservation. Thus the two proposals for superconformal symmetry agree.

Let us conclude with some remarks. One may wonder about the different structures of G1→2,
G2→1 and G3→0 concerning the signs of the particle energies [43]. For instance, all signatures com-
patible with energy-momentum conservation are permitted in G1→2 and G3→0. The difference is
that G1→2 makes explicit reference to the sign of energies while G3→0 does not. Conversely, G2→1

requires the two in-going particles to have equal signs. In a canonical quantisation framework
this distinction between G1→2 and G2→1 actually makes sense. In such a picture, positive energy
states are represented by creation operators and negative energy states by annihilation opera-
tors. The deformed symmetry generator would thus consist of two creation and one annihilation
operator or vice versa. Now invariance of an operator means that it commutes with a symmetry
generator. Commuting the deformed generator with some operator can connect the two objects
by one (on-shell) Wick contraction (corresponding to G1→2) or by two (corresponding to G2→1).
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In the case of two contractions, the energies automatically align in agreement with the structure
of G2→1.12

We would also like to remark that the structures G1→2 and G2→1 in (7.8) are reminiscent
of the brackets and cobrackets in a classical double of a Lie bialgebra (cf. [67] for some explicit
expressions). In this analogy, positive and negative energy states correspond to the two copies of
the original bialgebra. Brackets are defined between elements of both copies, while the cobracket
remains confined to each subalgebra. The deeper meaning of this observation remains obscure,
but it may help to obtain a better understanding of the deformation.

7.2 One Loop

Having convinced ourselves of the equivalence of the two proposals [35] and [43] at tree level, we
should now compare our one-loop results to [43].

The most obvious difference is that while [43] calculate the action of generators on amplitudes
in the final analysis they are only concerned with the invariance of so-called IR-finite observables
such as inclusive cross-sections, see for example [28]. These are derived from cross sections made
from scattering amplitudes. Conversely, we formulate an invariance condition for the scattering
amplitudes themselves. Therefore anomaly contributions due to the integration measure could
be discarded in [43] while we have to take them into account. In particular, (7.7) does not hold

strictly which eventually leads to the deformation G
(1)
2→2 derived in Sec. 3.2.

One could now wonder whether our remaining deformations G
(1)
2→k, k ≥ 3, match with the

contribution from G2→1 in the framework of [43]. This expectation is reasonable because the
contributions have a similar structure, and in the case of MHV amplitudes they actually yield
coincident contributions. There is however one conceptual problem with applying the generator
G2→1 to some tree amplitude Aiε,n+1: The generator forces two legs of the amplitude to be strictly
collinear. On the one hand, the amplitude diverges near collinear configurations. On the other
hand, there are cancellations in the numerator which compensate the divergence. We give an
explicit example in App. E. In practice the amplitude Aiε,n+1 is split up into two subamplitudes
Ak+1 and An−k+2 in [43]. The split is performed using the CSW rules, [56], which require one
to go off shell or to violate momentum conservation by a tiny amount. Then the calculation
can be completed in terms of the subamplitudes and one ends up with finite contributions to
G2→1Aiε,n+1 (unless one of the two subamplitudes has only three legs).

In our approach we substitute the deformation G2→1 by the set of generators G
(1)
2→k. While

G2→1 is an extremely simple generator, its action involves computing loop integrals which are
complicated and potentially divergent. For our generators we have essentially already performed
the regularised loop integrals. Consequently the generators are somewhat more complicated, but
their action on amplitudes is straight-forward, and the IR divergences are manifest.

12One may wonder what about G3→0 which apparently has no representation in a canonical quantisation frame-
work. Consequently the S-matrix operator does not seem to commute with the deformed generator. Nevertheless
there appears to exist a slightly deformed version of the S-matrix operator which does commute and which is
unitary.
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8 Conclusions

In this work we have analysed, in the context of N = 4 SYM, the fate of the superconformal
symmetries of generic scattering amplitudes and of the Yangian symmetries of planar amplitudes
once radiative corrections are taken into account. Our central message is that the IR singularities
pose no serious threat, as the symmetry generators can be deformed in such a fashion as to render
the amplitudes, defined in a dimensional regularisation scheme, invariant to one-loop order. The
key input was the inclusion of the deformation of the tree-level generators due to collinear terms
which give rise to leg changing effects. Here it proved very advantageous to represent these
terms arising from the holomorphic anomaly as an on-shell triangle graph. Acting with the tree
level generators on the branch cuts of the one-loop scattering amplitudes then led to a natural
one-loop deformation of the representation which moreover could be lifted off the cut by virtue
of the cut-constructibility of the theory. Specialising to the planar theory, an analogous result
was obtained for the level-one Yangian generator of momentum, which, along with the dilatation
generator, could even be deformed to the all-loop level.

Importantly, we were able to represent a universal form of the deformation of any generator
by putting the on-shell triangle anomaly inside the loop in all possible ways. This construction
turned out to localise all integrals, so that effectively no loop integration had to be performed
and only tree-level data, consisting of vertices and amplitudes, entered the construction.

It would be interesting to repeat the study of deformations with an alternative regulator.
In particular the recently introduced Higgs IR regulator of [21] comes to mind, where the all-
loop deformation of the dilatation and dual conformal generator are simple and have a natural
five-dimensional holographic interpretation.

The most pressing question left open in our work is the closure of the algebra of the one-
loop deformed generators. While it is obvious that this will be the case for the super-Poincaré
and R-symmetry generators (by virtue of the regularisation procedure) this is not at all so for
the super-conformal part. Acting on the amplitudes the algebra is of course trivially obeyed,
but one would like to know if it closes for the generators. Note that this will depend on the
functional space on which the generators are allowed to act: For instance, even at tree level the
algebra closes only on gauge-invariant functions [35]. At one loop, extra constraints may become
necessary, such as, perhaps, (super) Poincaré-invariance or cyclicity. The question of the algebra
is also intimately connected with the existence of a deformed Yangian symmetry at loop level,
as the algebra along with the explicit form of the level-one momentum generator gives rise to all
further level-one generators. To establish the complete Yangian symmetry a check of the super-
Serre relations for the deformed generators is also needed. However, it is possible that while one
can find an infinite tower of charges that annihilate amplitudes the issue regarding their algebra
may be subtle as is the case for non-ultralocal two-dimensional integrable field theories. We
intend to address these questions in the future.

Recently, remarkable formulae have been proposed based on an integral over a certain Graß-
mannian with manifest superconformal invariance, which reproduce the N = 4 SYM tree-level
amplitudes and even integral coefficients of higher-loop integral topologies [68] thereby respecting
Yangian symmetry [69]. It would be interesting to clarify the relation to our approach.
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A further important question is whether the loop-deformed symmetries are constructive in
the sense of determining the loop-level amplitudes completely. This was argued to be the case
for the tree-level amplitudes upon the incorporation of the collinear terms in [36,35]. We would
certainly expect this to remain true at the loop level. One immediate question is what can the
symmetries tell us about the remainder function, that is the difference between the ABDK/BDS
ansatz of [70] and the true finite part of the amplitude, starting at the two-loop order? It is
known that the naive dual conformal symmetries alone are insufficient to fix this function and,
while there has already been significant numerical and analytic work [71], determining its exact
form remains a challenging open problem.
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A Anomaly as a Three-Vertex

In this appendix we derive the form the anomaly vertex for superconformal boosts by acting
on a 3-vertex by a superconformal boost generator. The result is expected to reproduce the
superconformal boost deformation found in [35].

A.1 Three-Vertices

Consider the MHV 3-vertex

A3 =
δ4(P ) δ8(Q)

〈1, 2〉〈2, 3〉〈3, 1〉
. (A.1)

Momentum conservation does not allow for a proper phase space in (3, 1) signature. Let us
therefore continue in (2, 2) signature where the full phase space exists. In this form, however,
the anomaly cannot be seen easily, and we first recast the vertex into a different form. The two-
component spinors λ and λ̃ are now independent and real. The amplitude can be represented
in an alternative form which will be useful for further considerations: We note identities which
allow to express spinors λ or λ̃ in a given basis of two different spinors µ, µ′ or µ̃, µ̃′, respectively

1 =
∣∣〈µ, µ′〉∣∣ ∫ dx dx′ δ2(λ− xµ− x′µ′),

1 =
∣∣[µ̃, µ̃′]∣∣ ∫ dx̃ dx̃′ δ2(λ̃− x̃µ̃− x̃′µ̃′). (A.2)
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We use the latter to express λ̃1 and λ̃2 in a basis of λ̃3 and some reference spinor µ̃.

A3 =
[3, µ̃]2

〈1, 2〉〈2, 3〉〈3, 1〉

∫
dx̃1 dx̃

′
1 dx̃2 dx̃

′
2 δ

2(λ̃1 − x̃1λ̃3 − x̃′1µ̃) δ2(λ̃2 − x̃2λ̃3 − x̃′2µ̃)

· δ4
(
(x̃1λ1 + x̃2λ2 + λ3)λ̃3 + (x̃′1λ1 + x̃′2λ2)µ̃

)
δ8
(
λ1η1 + λ2η2 + λ3η3

)
.

(A.3)

A further identity converts a spinorial delta function into a product of two regular delta functions

δ2(aλ+ bµ) =
δ(a) δ(b)∣∣〈λ, µ〉∣∣ , δ2(aλ̃+ bµ̃) =

δ(a) δ(b)∣∣[λ̃, µ̃]
∣∣ . (A.4)

The momentum delta function implies λ3 = −x̃1λ1 − x̃2λ2 which we can use to convert the
supermomentum delta function to δ8(λ1(η1 − x̃1η3) + λ2(η2 − x̃2η3)). Again we can use the
identity (A.4), but now the argument is fermionic and the measure factor |〈λ1, λ2〉| must be in
the numerator instead of the denominator. We end up with A3 given through a set of delta
functions and a signum function

A3 = sign
(
〈1, 2〉

) ∫ dx̃1

x̃1

dx̃2

x̃2

δ2(x̃1λ1 + x̃2λ2 + λ3)

· δ2(λ̃1 − x̃1λ̃3) δ2(λ̃2 − x̃2λ̃3) δ4(η1 − x̃1η3) δ4(η2 − x̃2η3). (A.5)

Similarly the conjugate MHV 3-vertex reads

Ā3 = sign
(
[1, 2]

) ∫ dx1

x1

dx2

x2

δ2(λ1 − x1λ3) δ2(λ2 − x2λ3)

· δ2(x1λ̃1 + x2λ̃2 + λ̃3)δ4(x1η1 + x2η2 + η3). (A.6)

A.2 Anomaly Three-Vertices

The collection of delta functions is superconformal and hence it is annihilated by the super-
conformal boosts S and S̄. Only the signum factor violates invariance under the conjugate
superconformal boost S̄free. According to the identity d sign(x) = 2dx δ(x) the derivative in the
generator converts it to a delta function forcing λ̃1 and λ̃2 to be collinear. Expressing λ̃1 and λ̃2

in a basis of λ̃3 and a reference spinor µ̃ we arrive at

(S̄free)Bα̇ Ā3 = 2εα̇γ̇(λ̃
γ̇
2η

B
1 − λ̃

γ̇
1η

B
2 )

∫
dx1

x1

dx2

x2

dx̃1 dx̃2 δ(1 + x1x̃1 + x2x̃2)

· δ2(λ1 − x1λ3) δ2(λ2 − x2λ3)

· δ2(λ̃1 − x̃1λ̃3) δ2(λ̃2 − x̃2λ̃3) δ4(x1η1 + x2η2 + η3). (A.7)

We can recast this expression into a different form which may be more convenient for some
purposes. To that end we insert 1 =

∫
d4|4Λ′δ2(λ′)δ2(λ̃′)δ4(η′ − x̃2η1 + x̃1η2) and use an identity

which holds when 1 + x1x̃1 + x2x̃2 = 0

δ4(η′ − x̃2η1 + x̃1η2) δ4(x1η1 + x2η2 + η3) = δ4(η1 − x̃1η3 + x2η
′) δ4(η2 − x̃2η3 − x1η

′). (A.8)
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Next we supplement d4η′ by d4λ′ = d2λ′d2λ̃′ and the corresponding delta function δ4(λ′) =
δ2(λ′)δ2(λ̃′) to d4|4Λ′δ4(λ′). Subsequently we can add terms λ′, λ̃′ to the delta function to make
them appear more symmetric

(S̄free)Bα̇ Ā3 = 2

∫
d4|4Λ′ δ4(λ′) εα̇γ̇λ̃

γ̇
3η
′B
∫
dx1

x1

dx2

x2

dx̃1 dx̃2 δ(1 + x1x̃1 + x2x̃2)

· δ2(λ1 − x1λ3 + x̃2λ
′) δ2(λ2 − x2λ3 − x̃1λ

′)

· δ2(λ̃1 − x̃1λ̃3 + x2λ̃
′) δ2(λ̃2 − x̃2λ̃3 − x1λ̃

′)

· δ4(η1 − x̃1η3 + x2η
′) δ4(η2 − x̃2η3 − x1η

′). (A.9)

In order to convert the expression to the physical (3, 1) spacetime signature we perform
a change of variables such that x̃1,2 = ±x̄1,2. Here we must distinguish three different cases
depending on the energy signatures of the particles: (± ± ∓), (∓ ± ±) and (± ∓ ±). They are
achieved by the substitutions (0 ≤ α, β ≤ 1

2
π, 0 ≤ ϕ, ϑ < 2π)

x1 = e−iϕ sinα, x̃1 = −eiϕ sinα, x2 = e−iϑ cos β, x̃2 = −eiϑ cos β,

x1 = e−iϕ+iϑ tanα, x̃1 = +eiϕ−iϑ tanα, x2 = eiϑ sec β, x̃2 = −e−iϑ sec β,

x1 = eiϕ secα, x̃1 = −e−iϕ secα, x2 = e−iϑ+iϕ tan β, x̃2 = +eiϑ−iϕ tan β. (A.10)

The delta function for the x’s leads to β = α. We combine the delta functions δ4|4(Λ) =
δ4(λ)δ4(η) = δ2(λ)δ2(λ̃)δ4(η) and multiply with a suitable prefactor of −1/2 to obtain the
anomaly vertex

(S̄3)Bα̇ = −1
2
(S̄free)Bα̇ Ā3

= −2

∫
d4|4Λ′ δ4(λ′) εα̇γ̇λ̃

γ̇
3η
′B
∫
dα dϕ dϑ eiϕ+iϑ

· δ4|4(e−iϕΛ̄3 sinα + eiϑΛ̄′ cosα− Λ1)

· δ4|4(e−iϑΛ̄3 cosα− eiϕΛ̄′ sinα− Λ2)

+ 2 cyclic images. (A.11)

An analogous construction leads to the anomaly vertex for the superconformal boost

(Sfree)αBA3 = 2εαγ(λ
γ
2∂1,B − λγ1∂2,B)

∫
dx̃1

x̃1

dx̃2

x̃2

dx1 dx2 δ(1 + x1x̃1 + x2x̃2)

· δ2(λ1 − x1λ3) δ2(λ2 − x2λ3)

· δ2(λ̃1 − x̃1λ̃3) δ2(λ̃2 − x̃2λ̃3)

· δ4(η1 − x̃1η3) δ4(η2 − x̃2η3). (A.12)

Here we insert 1 =
∫
d4|4Λ′δ4|4(Λ′), expand some of the delta function by terms in Λ′ and finally
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make the above replacements to convert to (3, 1) signature

(S3)αB = −1
2
(Sfree)αBA3

= −2

∫
d4|4Λ′ δ4|4(Λ′) εαγλ

γ
3∂
′
B

∫
dα dϕ dϑ e−iϕ−iϑ

· δ4|4(e−iϕΛ̄3 sinα + eiϑΛ̄′ cosα− Λ1)

· δ4|4(e−iϑΛ̄3 cosα− eiϕΛ̄′ sinα− Λ2)

+ 2 cyclic images. (A.13)

A.3 Tree-Level Superconformal Anomaly

The above expressions agree (up to a conventional overall factor and phase redefinitions) with
the superconformal boost deformations found in [35]. Let us repeat the calculation for the
colour-ordered planar MHV amplitudes in order to fix the overall factors.

Consider the holomorphic anomaly for spinor variables (2.18). First we resolve the delta
function in terms of an explicit relation between the spinors using an identity analogous to (A.2)

δ2
(
〈λ, µ〉

)
=

∫ ∞
0

2r dr

∫ 2π

0

dϕ δ2(λ− reiϕµ)
(
δ2(λ̃− re−iϕµ̃) + δ2(λ̃+ re−iϕµ̃)

)
. (A.14)

Now we can compute the anomaly of MHV amplitudes

(S̄free)Bα̇An = 4πεα̇γ̇

n∑
k=1

∫ ∞
0

r dr

∫ 2π

0

dϕ

(
λ̃γ̇k+1η

B
k − λ̃

γ̇
kη

B
k+1

)
δ4(P ) δ8(Q)

〈12〉 . . . 〈k, k + 1〉0 . . . 〈n1〉

· δ2(λk − reiϕλk+1)
(
δ2(λ̃k − re−iϕλ̃k+1)− δ2(λ̃k + re−iϕλ̃k+1)

)
.

(A.15)

We compare this to the deformation S̄1→2 of the representation which consists in inserting
the anomaly three-vertex into the amplitude

(S̄1→2)Bα̇An−1 =
n∑
k=1

∫
d4|4Λa sign(EkEk+1)

· S̄3(k, k + 1, ā)Bα̇An−1(1, . . . , k − 1, a, k + 2, . . . , n). (A.16)

For the anomaly vertex we use the above result (A.11) where the prefactor was already chosen
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correctly. The deformation of the representation yields the contribution

(S̄1→2)Bα̇An−1 = 4π
n∑
k=1

εα̇γ̇

(
λ̃γ̇k+1η

B
k − λ̃

γ̇
kη

B
k+1

)
δ4(P ) δ8(Q)

〈12〉 . . . 〈k, k + 1〉0 . . . 〈n1〉

·
[
−
∫ ∞

0

r dr dϕ δ2(λk − reiϕλk+1) δ2(λ̃k − re−iϕλ̃k+1)

+

∫ 1

0

r dr dϕ δ2(λk − reiϕλk+1) δ2(λ̃k + re−iϕλ̃k+1)

+

∫ ∞
1

r dr dϕ δ2(λk − reiϕλk+1) δ2(λ̃k + re−iϕλ̃k+1)

]
,

(A.17)

where each of the three term originates from the above three components of (A.11). This shows
that the prefactors for the three terms have to be chosen as in (A.11) in order for the anomaly
to be cancelled.

B One-Loop MHV Amplitude

In this appendix we collect results and identities for the (planar) one-loop MHV amplitude and
the underlying “2-mass easy” box integrals. The n-point MHV amplitude in N = 4 SYM was
found in [37] and the derivations of many of these results can be found there.

B.1 Box Integrals

The one-loop correction to any amplitude can be obtained as a linear combination of scalar box
integrals

I� = −i
∫
µ2εd4−2ε`

(2π)4−2ε

1

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
. (B.1)

For MHV amplitudes the only contributions come from special “2-mass easy” box integrals with
light-like momentum inflow at two opposite corners, p2

2 = p2
4 = 0. It makes sense to split the

integral I� up into a dimensionless loop function F and a rational prefactor

I� =
F

16π2∆
, ∆ = −1

2
(st− uv). (B.2)

where the invariants s, t, u, v are defined as

s = (p1 + p2)2, t = (p1 + p4)2, u = p2
1, v = p2

3. (B.3)
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In dimensional regularisation the F takes the following form13

F = −cε
ε2

(
s

−µ2

)−ε
− cε
ε2

(
t

−µ2

)−ε
+
cε
ε2

(
u

−µ2

)−ε
+
cε
ε2

(
v

−µ2

)−ε
+ 1

2
log2 s

t

+ Li2

(
1− u

s

)
+ Li2

(
1− u

t

)
+ Li2

(
1− v

s

)
+ Li2

(
1− v

t

)
− Li2

(
1− uv

st

)
. (B.4)

It has been normalised such that the coefficients of the resulting Li2 and log2 terms are ±1
and ±1

2
, respectively. Here cε is a frequently occurring function of dimensional regularisation

parameter ε

cε = (4π)ε
Γ(1 + ε) Γ(1− ε)2

Γ(1− 2ε)
= 1 +O(ε). (B.5)

The one-mass and massless box functions can be viewed as a special case with u = 0 or/and
v = 0. Here the third or/and fourth terms in (B.4) are singular and the correct prescription in
dimensional regularisation is to drop them altogether.

Note that the above expression is not meant to reproduce the physically correct imaginary
part in all cases. One would have to pick the applicable Riemann sheet of the function for each
physical situation. Here we have written it such that the function is real when all invariants
s, t, u, v are negative.

B.2 BCF Construction

The coefficients of the scalar box integrals for any one-loop amplitude in N = 4 SYM are
determined through quadruple cuts [40]. Due to the tight supersymmetry constraints on MHV
amplitudes, all coefficients must equal the tree-level amplitude. One can thus write

A(1)
n = A(0)

n M (1)
n . (B.6)

where M (1) is a sum over normalised 2-mass easy scalar box integrals, cf. Fig. 17,14

M (1)
n = 1

2

n−2∑
k=2

n∑
j=1

F (tkj , t
k
j+1, t

k−1
j+1 , t

k+1
j ). (B.7)

Note that the boundary terms k = 2 and k = n− 2 in the sum a third leg of the box is light-like
and the loop function is actually a one-mass box. As described above, in these cases one has
to carefully drop singular terms from F in (B.4). Furthermore, many of the individual terms in

13Actually all terms — not just the first four, divergent ones — should be proportional to µ2ε. For the finite
terms this plays almost no role and hence such minute factors can be safely discarded. The only place where it
does matter is in collinear limits.

14In this sum every term effectively appears twice, hence a factor of 1
2 . This way of writing the sum has the

benefit that no distinction has to be made between even and odd n.
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j + 1
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Ā
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3

A
(0)
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(0)
3

A
(0)
n−k+1

Figure 17: A box integral contribution to the one-loop MHV amplitude

F�2m cancel in the sum M
(1)
n for which we obtain the convenient final result

M (1)
n = −

n∑
j=1

cε
ε2

(
t2j
−µ2

)−ε
+ 1

6
nπ2 − 1

2

n−3∑
k=3

n∑
j=1

Li2

(
1−

tk−1
j+1t

k+1
j

tkj t
k
j+1

)

− 1
2

n−3∑
k=2

n∑
j=1

log2
tkj

tk+1
j

+ 1
4

n−2∑
k=2

n∑
j=1

log2
tkj
tkj+1

. (B.8)

B.3 Variations

For acting with superconformal symmetries we must take derivatives of loop function M (1) with
respect to the external momenta. As these appear only within the Mandelstam invariants tkj it
suffices to compute the variation w.r.t. them

δM (1)
n = +1

2

n∑
j=1

(
δ log

t2j−1t
2
j+1

µ4

)
cε
ε

(
t2j
−µ2

)−ε

+ 1
2

n−3∑
k=2

n∑
j=1

(
δ log

∆k
j

∆k+1
j−1

)
log

tk+1
j

tkj
. (B.9)

Here ∆k
j is the following combination of invariants which arises from derivatives of the dilogs in

(B.4)
∆k
j = −1

2
(tkj t

k
j+1 − tk−1

j+1t
k+1
j ). (B.10)

Reducing all invariants to tk−1
j+1 plus extra terms, this equals

∆k
j = (pk · pj+k)(P k−1

j+1 · P k−1
j+1 )− 2(pj · P k−1

j+1 )(pj+k · P k−1
j+1 ). (B.11)
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In four dimensions one can furthermore use spinor helicity variables to write pj ·pk = 1
2
〈j, k〉[k, j].

Then ∆k
j magically factorises into two terms Υ kj = 〈j|P k−1

j+1 |j + k]

∆k
j = 1

4

j+k−1∑
m,n=j+1

((pk · pj+k)(pm · pn)− (pj · pm)(pj+k · pn)− (pj · pn)(pj+k · pm))

= −1
2

j+k−1∑
m,n=j+1

〈j,m〉[m, j + k]〈j + k, n〉[n, j]

= −1
2
〈j|P k−1

j+1 |j + k]〈j + k|P k−1
j+1 |j] = 1

2
Υ kj Υ

n−k
j+k . (B.12)

After substituting ∆k
j and using the identities

Υ 2
j−1 = 〈j − 1, j〉[j, j + 1],

Υ n−2
j+2 = −〈j + 1, j + 2〉[j, j + 1],

t2j = −〈j, j + 1〉[j, j + 1] (B.13)

we end up with a convenient form for the variation of the loop function

δM (1)
n =

n∑
j=1

(
δ log

〈j − 1, j〉[j, j + 1]〈j + 1, j + 2〉
−µ2〈j, j + 1〉

)
cε
ε

(
t2j
−µ2

)−ε

−
n−3∑
k=2

n∑
j=1

(
δ log

Υ k+1
j−1

Υ kj

)
log

tk+1
j

tkj
. (B.14)

B.4 Collinear Configurations

Finally we would like to address the question what happens when two adjacent legs, say n−1 and
n, are strictly collinear while evaluating the loop integral M

(1)
n .15 Most terms of the sum (B.7)

reduce to terms of M
(1)
n−1 when combining the two collinear momenta into one pn−1 + pn → pn−1.

This is because the function M
(1)
n depends only on ranges of momenta P k

j in tkj . The only
exceptions arise when the range begins or ends between the collinear momenta.

Let us therefore analyse more carefully the differences between M
(1)
n and M

(1)
n−1. Assume that

the collinear momenta obey

pn−1 → zpn−1, pn → z̄pn−1, z + z̄ = 1. (B.15)

15Note that one has to distinguish between the collinear limit of the loop function and its value when two
momenta are collinear. This does not mean that the limit is not smooth, but it apparently does not commute
with removing the regulator.
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The Mandelstam invariants then reduce according to

tkj →



tkj when j < n− k,
ztkj + z̄tk−1

j when j = n− k,
tk−1
j when n− k < j < n,

z̄tkj−1 + ztk−1
j when j = n,

tkj−1 when n < j,

(B.16)

To account for these different cases, we should split up the sum over j in (B.7) into the ranges
{1, . . . , n− k− 2}, {n− k+ 1, . . . , n− 2} and treat the four remaining values separately. It turns
out that almost all terms combine as follows (see e.g. [72])

M (1)
n →M

(1)
n−1 + F (0, z̄t2n−1, t

2
n−1, 0) + F (zt2n−2, 0, 0, t

2
n−2). (B.17)

In combining some terms we made use of a splitting identity for the box function

F (s, t, u, v) = F (s, zt+ z̄v, z̄s+ zu, v) + F (z̄s+ zu, t, u, zt+ z̄v). (B.18)

It follows from two dilog identities (x = u/s, y = v/t)

0 = Li2(1− z) + Li2

(
1− 1

z

)
+ 1

2
log2 z,

0 = + Li2 (1− x) + Li2 (1− y)− Li2(1− xy)

− Li2
(
z(1− x)

)
− Li2

(
z̄(1− y)

)
− log(z̄ + zx) log(z + z̄y)

− Li2
z(1− y)

z + z̄y
− Li2

z̄(1− x)

z̄ + zx
+ Li2

z(1− xy)

z + z̄y
+ Li2

z̄(1− xy)

z̄ + zx
. (B.19)

It is tricky to determine the value of F (0, t, u, 0). It originates form a one-mass box integral
evaluated at s = 0. Unfortunately, the expression (B.4) is very singular at this point. One way to
obtain a value is to consider a particular configuration of invariants and show that F (zu, t, u, zt) =
0. Then the limit z → 0 suggests that F (0, t, u, 0) = 0, but it is certainly not a smooth limit in
general. Another indication in favour of this result is that the original box integral I�(0, t, u, 0)
is finite. Furthermore, the multiplicative factor ∆ = 0 and thus F (0, t, u, 0) = 0. So we are led
to the conclusion that the MHV loop factor with two collinear momenta reduces exactly to the
loop factor with the two collinear momenta replaced by their sum

M (1)
n

∣∣
n−1‖n = M

(1)
n−1. (B.20)

However, this is not the only way to define this limit and in general

M (1)
n

∣∣
n−1‖n = M

(1)
n−1 + rS , (B.21)

with the function rS being non-trivial. For example, in the prescription given by [32] and used
widely in literature this function is at one-loop that given in Sec. 3.4.
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C Computation of the On-Shell Triangle Anomaly

In this appendix we compute the on-shell triangle integral (4.20)

(T kj )Bα̇ =
1

8π3

∫
d4|4Λa d

4|4Λb d
4|4Λc sign(tkj − tk+1

j ) S̄3(b̄, ā, j + k)Bα̇

· A(0)
k+2(a, c, j, . . . , j + k − 1)A

(0)
n−k+1(c̄, b, j + k + 1, . . . , j + n− 1). (C.1)

representing the superconformal anomaly. Substituting the anomaly vertex (2.23), performing
the trivial phase integrals over ϕ and ϑ and pulling out an overall tree-level MHV amplitude we
arrive at

(T kj )Bα̇ =
1

π
A(0)
n εα̇γ̇λ̃

γ̇
j+k sign(tk+1

j − tkj )
∫
dα d4λc δ

4(pa + pc + P k
j )∫

d4ηc d
4η′ η′B δ8(qa + qc +Qk

j )

〈j − 1, j〉
〈j − 1, c〉〈c, j〉

〈j + k − 1, j + k〉〈j + k, j + k + 1〉
〈j + k − 1, a〉〈a, c〉〈c, b〉〈b, j + k + 1〉

, (C.2)

where the spinor helicity variables of two intermediate particles are determined through the
momentum fraction angle α

λa = λj+k cosα, λ̃a = λ̃j+k cosα, ηa = ηj+k cosα− η′ sinα,

λb = λj+k sinα, λ̃b = λ̃j+k sinα, ηb = ηj+k sinα + η′ cosα.
(C.3)

We now evaluate the three lines of the above expression in parts. The bosonic integral on the
first line of (C.2) is of the form16∫

d4λ2 δ
4(p1 + p2 + P ) = 2πδ

(
〈1|P |1] + P 2

)
. (C.4)

The spinor λ2, λ̃2 is fixed up to a phase

|2〉 = xP |1], [2| = x̃〈1|P, xx̃ = − 1

〈1|P |1]
, x̃ = ±x∗. (C.5)

We then substitute the appropriate momenta and note that 〈j + k|P k
j |j + k] = tk+1

j − tkj . The
resulting delta function subsequently localises the integral over α∫

dα d4λc δ
4(pa + pc + P k

j ) = 2π

∫
dα δ

(
(tk+1
j − tkj ) cos2 α + tkj

)
=

π∣∣tk+1
j − tkj

∣∣ sinα cosα
. (C.6)

16We use a delta function for momenta P in spinor notation δ4(P βα̇) rather than in vector notation δ4(Pµ) =
4δ4(P βα̇).
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The variables are fixed at17

λβc = x(P k
j )βα̇εα̇γ̇λ̃

γ̇
j+k, cos2 α =

tkj

tkj − tk+1
j

. (C.7)

The fermionic integral on the second line of (C.2) can be evaluated by expressing Q in a basis of
λa and λc and using (A.4) to split up the δ8 into the product of two δ4∫

d4ηc d
4η′ η′Bδ8(qa + qc +Qk

j )

=
(
sinα cosα〈j + k, c〉

)3(
cos2 α〈j + k, c〉ηBj+k − λδcεδε(Qk

j )
εB
)
. (C.8)

The rational spinor function on the third line of (C.2) reads

〈j − 1, j〉
〈j − 1, c〉〈c, j〉

〈j + k − 1, j + k〉〈j + k, j + k + 1〉
〈j + k − 1, a〉〈a, c〉〈c, b〉〈b, j + k + 1〉

=
〈j − 1, j〉

(sinα cosα〈j + k, c〉)2〈j, c〉〈j − 1, c〉
. (C.9)

We assemble and simplify these expressions and altogether we find

(T kj )Bα̇ = A(0)
n εα̇γ̇λ̃

γ̇
j+k

〈j − 1, j〉
(
λ̃κ̇j+kεκ̇λ̇(P

k
j )δλ̇εδε(Q

k
j )
εB − tkjηBj+k

)
〈j|P k

j |j + k] 〈j − 1|P k
j |j + k]

. (C.10)

D Details of Six-Point NMHV Amplitude

Here we give some more details relevant to the six-point NMHV amplitude

A
(1)
6;NMHV = A

(0)
6;MHV

(
R146F

[1]
6 +R251F

[2]
6 +R362F

[3]
6 +R413F

[1]
6 +R524F

[2]
6 +R635F

[3]
6

)
. (D.1)

Explicit expressions of the R invariants can be found in [13]. For the six-point amplitudes they
can be written as, e.g.

R146 =
〈34〉〈56〉〈61〉〈45〉δ(4)(ζ456)

x2
14〈1|P 3

1 |4]〈3|x36|6][45][56]
(D.2)

where
ζ456 = η4[56] + η5[64] + η6[45]) . (D.3)

A general relation amongst the R structures which holds for any amplitude is

Rr,r+2,s = Rr+2,s,r+1 (D.4)

17In fact, for real 0 ≤ α ≤ π/2 we must assume 0 ≤ cos2 α ≤ 1 implying an energy signature (± ± ∓) of the
three particles. Here we also allow for the ranges cos2 α < 0 and 1 < cos2 α. These additional ranges correspond
to the energy signatures (∓±±) and (±∓±) of the three particles contributed by the 2 cyclic images in (2.23).
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and an important relation which holds for the specific case of the six-point amplitude is

R146 +R135 +R136 = R624 +R625 +R635 . (D.5)

Thus, using R251 = R625, R362 = R136, R413 = R624, R524 = R135, we could pick R146, R625, R136,
R624 and R135 as the independent structures (i.e. we remove R635 in terms of the others). A useful

expression for the sum of box functions which occur in A
(1)
6;NMHV, from which one can extract the

variation, is:

F
[1]
6 = − cε

2ε2

6∑
i=1

(
−t2i
µ2

)−ε
−
[

log
t31
t21

log
t31
t22

+ log
t31
t24

log
t31
t25
− log

t31
t23

log
t31
t26

]
+

1

2

[
log

t21
t24

log
t22
t25

+ log
t26
t21

log
t22
t23

+ log
t23
t24

log
t25
t26

]
+
π2

3
. (D.6)

The remaining F
[i]
6 can be found by cyclicly permuting this expression. The variation can be

written as

S̄
(0)
1→1A

(1)
6;NMHV = A

(0)
6;MHVR146

[
6∑
i=1

S̄
(0)
1→1

[
− cε

2ε2

(
t2i
−µ2

)−ε ]
+ log t31 S̄

(0)
1→1 log

[t21t22
t23t

2
6

]
+ log

t21
−µ2

S̄
(0)
1→1

(
−1

2
log
[(t22)2

t23t
3
1

])
+ log

t22
−µ2

S̄
(0)
1→1

(
−1

2
log
[(t21)2

t26t
3
1

])
+ log

t23
−µ2

S̄
(0)
1→1

(
+

1

2
log
[t21
t31

])
+ log

t24
−µ2

S̄
(0)
1→1

(
−1

2
log
[t22
t26

])
+ log

t25
−µ2

S̄
(0)
1→1

(
−1

2
log
[t21
t23

])
+ log

t26
−µ2

S̄
(0)
1→1

(
−1

2
log
[t31
t22

])]
+ . . . (D.7)

where we have made use of the relations

R146S̄
(0)
1→1 log

t25
t31

= R146S̄
(0)
1→1 log

t24
t31

= 0 . (D.8)

The remaining terms can again be found by cyclic permutations.

E One-Loop Anomaly of MHV-4 Amplitude

In this appendix we consider the one-loop superconformal invariance of amplitudes using the
approach of [43]. Although the deformation of the superconformal generators itself does not
make reference to the CSW rules [56], their application to amplitudes is hard to define properly
without them. Here we perform an explicit calculation for the four-particle MHV amplitude
pointing out an ambiguity and how it may be resolved.
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In the proposal [43] the one-loop superconformal anomaly for n-particle MHV amplitudes is
compensated by the action of S̄2→1 (7.9) on (n+1)-particle NMHV amplitudes. We now consider
the simplest case of 4-particle MHV amplitudes. We apply S̄2→1 directly to the 5-particle NMHV
amplitude without the use of CSW rules in order to understand the subtleties concerning collinear
configurations. The 5-particle NMHV amplitude reads [60]

ANMHV
5 =

δ4(P ) δ8(Q) δ4(η3[45] + η4[53] + η5[34])

[12][23][34][45][51]〈12〉4
. (E.1)

We wish to act with S̄2→1 on legs 4 and 5. In order to gain access to the collinear divergence,
we express λ̃4 in a basis of λ̃3 and λ̃5 using (A.2) (for simplicity we shall work in (2, 2) signature
where λ and λ̃ are independent)

ANMHV
5 =

∫
dỹ

ỹ

dz̃

z̃
δ2(z̃λ̃3 + ỹλ̃5 − λ̃4) δ4(z̃η3 + ỹη5 − η4)

[35]2
∣∣[35]

∣∣ δ4(P ) δ8(Q)

[12][23][51]〈12〉4
. (E.2)

We then multiply by the vertex S̄3 in the form of (A.7)

S̄Bȧ = −εα̇γ̇(λ̃γ̇5ηB4 − λ̃
γ̇
4η

B
5 )

∫
dx4

x4

dx5

x5

dx̃4 dx̃5 δ(1 + x4x̃4 + x5x̃5)

· δ2(λ4 − x4λ45) δ2(λ5 − x5λ45)

· δ2(λ̃4 + x̃4λ̃45) δ2(λ̃5 + x̃5λ̃45) δ4(x4η4 + x5η5 − η45). (E.3)

and integrate out Λ4 and Λ5. Here we make sure that at first only the integrations over spinors
are performed; the integrals over the auxiliary variables are left untouched. This yields

((S̄2→1)1
4)Bα̇A

NMHV
5 = −

∫
dx4 dx5 dx̃4 dx̃5 dỹ dz̃ δ(1 + x4x̃4 + x5x̃5) δ(z̃) δ(ỹ − x̃4/x̃5)

· (x4x̃5ỹ + x5x̃5)3

x4x5x̃5ỹ(x4x̃4 + x5x̃5)2

δ4(P − (1 + x4x̃4 + x5x̃5)p4) δ8(Q)

〈12〉〈23〉〈34〉〈41〉

· εα̇γ̇λ̃
γ̇
4

[34]

(
x4x̃4 + x5x̃5

x̃5

ηB3 +
ỹ − x̃4/x̃5

z̃
ηB4

)
. (E.4)

The second term in the brackets is undetermined because it equals 0/0 on the support of the
delta functions; let us replace it by some undetermined expression ∗. The remaining term is
well-defined and we can now perform the integrals over the auxiliary variables

((S̄2→1)1
4)Bα̇A

NMHV
5 = −

∫
dx4

x4

dx5

x5

dx̃4

x̃4

dx̃5

x̃5

δ(1 + x4x̃4 + x5x̃5)
εα̇γ̇λ̃

γ̇
4 (ηB3 + ∗ηB4 )

[34]
AMHV

4 . (E.5)

After performing the integrals over the x’s in proper (3, 1) Minkowski signature making sure that
the energies of particles 4 and 5 have equals signs in agreement with (7.9) we end up with

((S̄2→1)1
4)Bα̇A

NMHV
5 = −16π2

∫ π/2

0

dα

2 sinα cosα

εα̇γ̇λ̃
γ̇
4 (ηB3 + ∗ηB4 )

[34]
AMHV

4 . (E.6)
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The integral is clearly divergent. This divergence is of infrared type, and it is expected from [43].

In fact it looks similar to the action of S̄
(1)
2→2 defined in (3.44). Luckily, we can adjust the

undetermined coefficient ∗ in order to match the structure precisely. Noting an identity for valid
for physical four-particle configurations

λ̃4η3

[34]
=
λ̃4η1

[14]
+
λ̃4η4

[14]

〈24〉
〈21〉

=
λ̃4η1

[14]
− λ̃4η4

[34]

〈24〉
〈23〉

(E.7)

we set ∗ → 1
2
(〈24〉/〈23〉) so that the spinor structure becomes

εα̇γ̇λ̃
γ̇
4(ηB3 + 1

2
(〈24〉/〈23〉)ηB4 )

[34]
AMHV

4 =

(
εα̇γ̇λ̃

γ̇
4η

B
3

2[34]
+
εα̇γ̇λ̃

γ̇
4η

B
1

2[14]

)
AMHV

4 . (E.8)

The expression agrees with (3.44) up to cyclic permutations of the four particles. Even the
prefactor appears to agree once one imposes some ad-hoc regulator.

In conclusion we see that the alternative proposal [43] does appear to give analogous results
up to interpreting terms of the kind 0/0 in a suitable fashion. This is presumably achieved
by the CSW rules. Regularising divergent terms is another (separate) issue. In our proposal,
cf. Sec. 4, all expressions are well-defined in dimensional regularisation (or any other suitable
scheme), however, at the cost of having a substantially more involved deformation than just
S̄2→1.

F Conventions and Identities

In this appendix we list a few of the basic conventions and identities used in this paper.

Coupling Constant. We define the coupling constant g which we use for the loop expansion:

g2 =
λ

16π2
, λ = gYMCA. (F.1)

The ’t Hooft coupling is written using the adjoint Casimir which equals CA = Nc for a SU(Nc)
gauge group. We employ a dimensional regularisation scheme with straight minimal subtrac-
tion. The undesirable contributions of Euler’s gamma constant and log 4π’s are absorbed into a
constant cε which typically dresses poles in ε

cε = (4π)ε
Γ(1 + ε) Γ(1− ε)2

Γ(1− 2ε)
= exp

(
(log 4π − γ)ε− 1

12
π2ε2 +O(ε3)

)
= 1 +O(ε). (F.2)

The precise form of cε has no physical significance whatsoever.
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Complex Integrals. For performing integrals over the complex plane we use the convention
that z = (x + iy)/

√
2. We can then write two-dimensional integrals as simple products of one-

dimensional integrals as follows
d2z = dz dz̄. (F.3)

This proves particularly useful when Wick rotating to two independent real coordinates z, z̄.
Similarly, the corresponding delta functions factorise and the holomorphic anomaly reads

δ2(z) = δ(z)δ(z̄),
∂

∂z̄

1

z
= 2πδ(z)δ(z̄). (F.4)

Gauge Generators. The generators T a and structure constants fabc of the U(Nc) gauge group
are normalised such that

[T a, T b] = ifabcT c, Tr(T aT b) = δab. (F.5)

This leads to the following identities in traces

T aXT a = TrX, T a Tr(T aX) = X. (F.6)

Vectors and Spinors. For vectors we choose (−,+,+,+) as the signature of the Minkowski
metric, hence the mass shell condition for a massive particle is p2 = −m2.

The conversion between vector and spinor indices is normalised such that for two light-like
momenta p1, p2

(p1 + p2)2 = 2p1 · p2 = pδα̇1 εα̇γ̇p
βγ̇
2 εβδ = Tr(εp1εp

T

2 ) = [1, 2]〈2, 1〉. (F.7)

Moreover for a generic momentum P one has PεP T = −P 2ε.
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