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Abstract

In this work we demonstrate that the Yang-Baxter algebra can also be employed in

order to derive a functional relation for the partition function of the six vertex model
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1 Introduction

The six vertex model with domain wall boundary conditions was introduced in [1] and since

then many connections with enumerative combinatorics and orthogonal polynomials theory

have been unveiled. For instance, the problem of alternating sign matrices (ASM) and

domino tilings enumeration is known to have a close relationship with the six vertex model

with this particular boundary condition [2, 3, 4, 5]. Moreover, the partition function of this

model was also shown to correspond to a Schubert polynomial in [6] and to a KP τ function

in [7].

From the physical point of view the study of the partition function of this model reveals

us an interesting phenomena. Using the determinant representation found by Izergin [8] and

a Toda chain differential equation [9] satisfied by this partition function, it was shown in

[10] that the bulk free energy of the six vertex model with domain wall boundaries in the

thermodynamical limit differs from the one with periodic boundary conditions. This fact

has been also discussed in [11] and raises the issue of the sensitivity of the six vertex model

in the thermodynamical limit with boundary conditions.

Domain wall boundary conditions were first introduced and studied within the scope

of the Quantum Inverse Scattering Method [1], and they emerge naturally in the calculation

of correlations functions of quantum integrable systems [12]. On the other hand, integrable
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systems with an underlying Yang-Baxter symmetry have also been tackled by functional

equations methods, which are intimately connected with Baxter’s commuting transfer matrix

approach [13]. However, since functional methods usually do not provide the eigenvectors of

the system, it is usually claimed that the calculation of correlation functions is out of reach

for functional equations methods.

The use of the Yang-Baxter algebra in order to obtain functional equations was first

introduced in [14] and the aim of this paper is to show that the Yang-Baxter equation can

still be explored in order to obtain a functional relation for the partition function of the six

vertex model with domain wall boundaries.

This paper is organized as follows. In the section 2 we describe the six vertex model

with domain wall boundaries and its construction in terms of the Yang-Baxter algebra ele-

ments. In the section 3 we derive a functional equation determining the partition function

of the model and in section 4 we study its homogeneous limit and some particular solutions.

Concluding remarks and open questions are discussed in the section 5 and in the appendix

A we present some extra results and technical details.

2 The six vertex model with domain wall boundaries

Vertex models in Statistical Mechanics were first introduced by L. Pauling aiming to describe

the residual entropy of ice [15]. These models are described in terms of a matrix L containing

the statistical weights of the possible vertex configurations.

In a two dimensional rectangular lattice consisting of M horizontal and L vertical lines

we have L×M intersection points and the intersection point of the i-th horizontal and the j-

th vertical line together with the four connecting edges is referred as a vertex, as represented

in the Fig. 1.

The edge variables {αij , αij+1, βij, βi+1j} characterizes the configuration of the vertex

at position (i, j) while L
αi,j+1βi+1,j

αi,jβi,j+1
denotes its statistical weight. The partition function of the

model is thus obtained by summing the product of the statistical weights over all possible

configurations, i.e.

Z =
∑

{α,β}

M
∏

i=1

L
∏

j=1

L
αi,j+1βi+1,j

αi,jβi,j+1
. (1)

For a more detailed discussion about vertex models and their applications in Statistical
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Figure 1: (a) Rectangular lattice with M lines and L columns. (b) The vertex at position (i, j) with its

corresponding statistical weight.

Mechanics see for instance [16] and references therein.

In order to evaluate the sum (1) it is usually assumed a particular boundary condi-

tion and the concept of domain wall boundary conditions for the inhomogeneous six vertex

model was introduced by Korepin in the Ref. [1]. Turning our attention to the six vertex

model, each edge variable αij and βij can assume two possible configurations under a certain

restriction known as ice rule. These assumptions result in the following L-matrix

L(λ) =

















a(λ) 0 0 0

0 b(λ) c(λ) 0

0 c(λ) b(λ) 0

0 0 0 a(λ)

















(2)

containing the statistical weights a, b and c of the allowed configurations. The weights are

explicitly given by a(λ) = sinh (λ+ γ), b(λ) = sinh (λ) and c(λ) = sinh (γ) where γ is the

anisotropy parameter and the complex variable λ parametrizes the Yang-Baxter integrable

manifold
a2 + b2 − c2

2ab
= ∆ ∆ = cosh (γ). (3)

Strictly speaking, the L-matrix (2) satisfies the Yang-Baxter relation

L12(λ− µ)L13(λ− ν)L23(µ− ν) = L23(µ− ν)L13(λ− ν)L12(λ− µ) (4)

where Lij ∈ End (Vi ⊗ Vj) and Vi
∼= C2. Consequently, the monodromy matrix

T (λ, {µk}) = LA1(λ− µ1)LA2(λ− µ2) . . .LAL(λ− µL) (5)
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satisfies the relation

R(λ− ν) T (λ, {µk})⊗ T (ν, {µk}) = T (ν, {µk})⊗ T (λ, {µk}) R(λ− ν) (6)

where R(λ) = PL(λ) and P is the standard permutation matrix. The relation (6) is com-

monly referred as Yang-Baxter algebra and, together with the relation (4), they constitute

the basis of the Quantum Inverse Scattering Method [17, 12].

Boundary conditions are an important ingredient in the formulation of lattice models

and the case with domain wall boundary conditions introduced in [1] requires that the

boundary edges have a particular configuration respecting the six vertex model symmetry.

For the six vertex model each edge variable {αij, βij} can assume two possible configurations

which can be conveniently denoted by arrows pointing inwards or outwards, i.e.

αi,j = → or ←

βi,j = ↓ or ↑ (7)

In this way domain wall boundary conditions consist of the restrictions

αi,1 = → αi,L+1 =←

β1,j = ↓ βL+1,j = ↑ (8)

where now we are considering a square lattice with M = L. In order to make this situation

more clear and intuitive, we have depicted a possible six vertex lattice configuration with

domain wall boundaries in the Fig. 2.

Figure 2: A configuration with domain wall boundary conditions.

For the six vertex model the monodromy matrix (5) consist of a 2 × 2 matrix with

operator valued entries. Within the framework of the Quantum Inverse Scattering Method
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it can be conveniently denoted as

T (λ, {µk}) =





A(λ, {µk}) B(λ, {µk})

C(λ, {µk}) D(λ, {µk})



 (9)

and it was shown in [1] that the partition function (1) of the inhomogeneous six vertex model

with domain wall boundary conditions can be written as

ZDW = 〈0̄|

L
∏

j=1

B(λj , {µk}) |0〉 (10)

or equivalently by

ZDW = 〈0|

L
∏

j=1

C(λj, {µk}) |0̄〉 , (11)

where |0〉 and |0̄〉 denote the usual ferromagnetic states

|0〉 =

L
⊗

i=1





1

0



 and |0̄〉 =

L
⊗

i=1





0

1



 . (12)

In the next sections we shall demonstrate how the Yang-Baxter algebra can be employed in

order to obtain a functional relation for the partition function (10).

3 Yang-Baxter algebra and functional relations

The Yang-Baxter algebra is a corner stone of the Quantum Inverse Scattering Method and it

has been successfully explored in order to construct integrable systems and to extract exact

results from them. More recently, it was shown in [14] that the Yang-Baxter algebra can

also render functional relations determining the spectrum of spin chains with non-diagonal

twisted and open boundary conditions.

In the Ref. [1] Korepin obtained a recursion relation for the partition function (10)

whose solution was later on given by Izergin [18] in terms of a determinant formula. Our

purpose here is to demonstrate that the Yang-Baxter algebra also provide us a functional

equation determining the partition function of the six vertex model with domain wall bound-

aries. In order to do so we first need to recall some properties exhibited by the six vertex

model monodromy matrix (5).

Let |0〉j and |0̄〉j be the states





1

0



 and





0

1



 respectively, acting on the j-th space of

the tensor product V1⊗ V2⊗ · · ·⊗ Vj ⊗ · · ·⊗ VL. The action of these states on LAj yields us
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a triangular matrix. For instance we have

LAj(λ) |0〉j =





a(λ) |0〉j †

0 b(λ) |0〉j



 (13)

and analogously

LAj(λ) |0̄〉j =





b(λ) |0̄〉j 0

† a(λ) |0̄〉j



 , (14)

where the symbol † stands for a non-null value.

Due to its definition, the monodromy matrix (5) inherits the triangular properties (13)

and (14). In this way the monodromy matrix elements satisfy the relations

A(λ, {µk}) |0〉 =
L
∏

j=1

a(λ− µj) |0〉 B(λ, {µk}) |0〉 =†

C(λ, {µk}) |0〉 = 0 D(λ, {µk}) |0〉 =

L
∏

j=1

b(λ− µj) |0〉 , (15)

and

A(λ, {µk}) |0̄〉 =
L
∏

j=1

b(λ− µj) |0〉 B(λ, {µk}) |0̄〉 =0

C(λ, {µk}) |0̄〉 = † D(λ, {µk}) |0̄〉 =
L
∏

j=1

a(λ− µj) |0̄〉 . (16)

Another fundamental ingredient in the method considered here is the Yang-Baxter alge-

bra. The relation (6) encodes several commutation rules for the elements of the monodromy

matrix and among them we shall make use of the following ones

A(λ, {µk})B(ν, {µk}) =
a(ν − λ)

b(ν − λ)
B(ν, {µk})A(λ, {µk})−

c(ν − λ)

b(ν − λ)
B(λ, {µk})A(ν, {µk})

D(λ, {µk})B(ν, {µk}) =
a(λ− ν)

b(λ− ν)
B(ν, {µk})D(λ, {µk})−

c(λ− ν)

b(λ− ν)
B(λ, {µk})D(ν, {µk})

[C(λ, {µk}), B(ν, {µk})] =
c(λ− ν)

b(λ− ν)
[A(ν, {µk})D(λ, {µk})−A(λ, {µk})D(ν, {µk})]

B(λ, {µk})B(ν, {µk}) = B(ν, {µk})B(λ, {µk}) . (17)

In the Refs. [17] and [1] it was shown that the operator B(λ, {µk}) plays the role of

raising operator with respect to the pseudo-vacuum state |0〉 while the operator C(λ, {µk})
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acts as a lowering operator. Furthermore, it was also demonstrated in [1] that

C(λ0, {µk})

n
∏

i=1

B(λi, {µk}) |0〉 =

n
∑

i=1

Mi

n
∏

j=1

j 6=i

B(λj , {µk}) |0〉

+
∑

1≤i<j≤n

NjiB(λ0, {µk})

n
∏

l=1
l 6=i,j

B(λl, {µk}) |0〉 (18)

with

Mi =
c(λi − λ0)

b(λi − λ0)

n
∏

l=1

a(λ0 − µl)b(λi − µl)

n
∏

k=1
k 6=i

a(λi − λk)

b(λi − λk)

a(λk − λ0)

b(λk − λ0)

+
c(λ0 − λi)

b(λ0 − λi)

n
∏

l=1

a(λi − µl)b(λ0 − µl)
n
∏

k=1
k 6=i

a(λ0 − λk)

b(λ0 − λk)

a(λk − λi)

b(λk − λi)
(19)

Nji =
c(λ0 − λj)

b(λ0 − λj)

c(λi − λ0)

b(λi − λ0)

a(λj − λi)

b(λj − λi)

n
∏

l=1

a(λi − µl)b(λj − µl)

n
∏

m=1
m6=i,j

a(λj − λm)

b(λj − λm)

a(λm − λi)

b(λm − λi)

+
c(λ0 − λi)

b(λ0 − λi)

c(λj − λ0)

b(λj − λ0)

a(λi − λj)

b(λi − λj)

n
∏

l=1

a(λj − µl)b(λi − µl)

n
∏

m=1
m6=i,j

a(λi − λm)

b(λi − λm)

a(λm − λj)

b(λm − λj)

(20)

for any number n of operators B(λi, {µk}). The demonstration of (18)-(20) only makes use

of the commutation rules (17) together with the relations (15).

At this stage we have gathered most of the ingredients required to obtain a functional

relation for the partition function (10). In order to proceed we look to the relation (18) with

n = L+ 1 and act with the dual vector 〈0̄| on its left hand side. By doing so we obtain the

following relation

〈0̄|C(λ0, {µk})
L+1
∏

i=1

B(λi, {µk}) |0〉 =
L+1
∑

i=1

Mi Z(λ1, . . . , λi−1, λi+1, . . . , λL+1)

+
∑

1≤i<j≤L+1

Nji Z(λ0, λ1, . . . , λi−1, λi+1, . . . , λj−1, λj+1, . . . , λL+1)

(21)

where Z(λ1, . . . , λL) denotes the partition function (10) omitting the dependence with the

variables {µk}.
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We shall refer to
n
∏

i=1

B(λi, {µk}) |0〉 as Bethe vectors and it was also shown in [1] that

L
∏

j=1

B(λj , {µk}) |0〉 = Z(λ1, . . . , λL) |0̄〉 (22)

which implies in
L+1
∏

j=1

B(λj , {µk}) |0〉 = 0 (23)

due to the relations (16). The Bethe vectors enjoy the property of being highest weight

SU(2) vectors [19, 20] and a careful examination of (21), taking into account the relation

(23), reveals that its left hand side vanishes. In other words, the consistency of the Yang-

Baxter algebra with the highest weight property of the Bethe vectors results in the following

functional equation for (10),

L+1
∑

i=1

Mi Z(λ1, . . . , λi−1, λi+1, . . . , λL+1)

+
∑

1≤i<j≤L+1

Nji Z(λ0, λ1, . . . , λi−1, λi+1, . . . , λj−1, λj+1, . . . , λL+1) = 0 , (24)

where the functions Mi and Nji are given by the relations (19) and (20). We have verified the

validity of the relation (24) by explicit computing the partition function Z(λ1, . . . , λL) for

L = 1, 2, 3, 4, 5 using the definition (10), and in what follows we shall discuss the properties

of the Eq. (24) as well as some particular solutions.

4 The homogeneous limit

The results of the previous sections focus on an inhomogeneous lattice whose statistical

weights are parametrized by variables {λk} and {µk}. In this section we analyze explicitly

the homogeneous limit

λk → λ µk → µ (25)

in the Eq. (24) for L = 1, 2 which already unveils the properties that uniquely determine

the partition function (10).

The case L = 1 is trivial since the partition function Z(λ) can be promptly written

down from the definitions (2), (5) and (10). However it is worthwhile to look at (24) with
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L = 1 for illustrative purposes. In that case we have the equation

M1Z(λ2) +M2Z(λ1) +N21Z(λ0) = 0 , (26)

and by inspecting the relations (19) and (20) we find in general that the limit µk → µ can

be easily obtained. By way of contrast the limit λk → λ is highly non-trivial due to the

presence of poles in the functions Mi and Nji when two variables λk coincide. In spite of

that, this limit can be taken using L’Hopital’s rule and we shall see that the polynomial

structure and the asymptotic behavior discussed in the appendix A also plays an important

role in the unique determination of the the partition function Z(λ1, . . . , λL).

Considering the limits λ0, λ1, λ2 → λ and µ1 → µ in the Eq. (26) we obtain the

following differential equation,

[

1−
2qx

(q + q−1)

]

dZ

dx
+

x

2

[

1−
4qx

(q + q−1)
+ q2x2

]

d2Z

dx2
= 0 (27)

expressed in terms of the variables x = e2(λ−µ) and q = eγ. The Eq. (27) possess the general

solution

Z(x) = K1 +K2

[

(1 + q2)(xq2 − x−1)− 4q2 log x
]

, (28)

where K1 and K2 are arbitrary constants. However, the polynomial structure discussed in

the appendix A requires that K2 = 0 and we are thus left with Z(x) = K1. The constant

K1 is then fixed by the asymptotic behavior, see appendix A, and for L = 1 we end up with

Z(x) =
q − q−1

2
. (29)

As mentioned before, the case L = 1 is a trivial case and we now turn our attention to the

case L = 2. In that case the Eq. (24) reads

M1 Z(λ2, λ3) +M2 Z(λ1, λ3) +M3 Z(λ1, λ2)

+ N21 Z(λ0, λ3) +N31 Z(λ0, λ2) +N32 Z(λ0, λ1) = 0 (30)

and again we can use L’Hopital’s rule in order to evaluate the limit λ0, λ1, λ2, λ3 → λ and

µ1, µ2 → µ. In terms of the variables xi = e2(λi−µi), we have that Z(x1, x2) =
Z̄(x1,x2)√

x1x2
where

the function Z̄(x1, x2) is a polynomial of degree 1 in each variable separately as discussed in

the appendix A. Thus, in the homogeneous limit, the function Z̄ is a polynomial of order 2
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in the variable x. This fact implies in
dnZ̄

dxn
= 0 for n > 2 and taking this into account, when

considering the homogeneous limit in (30), we obtain the equation

Φ0(x)Z̄(x) + Φ1(x)
dZ̄(x)

dx
+ Φ2(x)

d2Z̄(x)

dx2
= 0 (31)

where

Φ0(x) = −4q2(1 + q2 + q4) + 6q4(1 + q2)x+ 12q6x2 − 6q6(1 + q2)x3

Φ1(x) = −(1 + 2q2 + 2q4 + q6) + 4q2(1 + q2 + q4)x− 12q6x3 + q4(−1 + 4q2 + 4q4 − q6)x4

Φ2(x) = (1− q2 − q4 + q6)x− 2q2(1− 2q2 + q4)(1 + q2x2)x2 + q4(1− q2 − q4 + q6)x5 .

(32)

Looking to the polynomial solution of (31), we can generically write

Z̄(x) = k2x
2 + k1x+ k0 (33)

where k0 , k1 and k2 are arbitrary constants. In this way by replacing (33) into (31) we find

k0 =
k2

q2
and k1 = −

4k2
(1 + q2)

, (34)

and the constant k2 is then fixed by the asymptotic behavior of Z̄ which can be found in the

appendix A. It turns out that

k2 = (q2 − q−2)(q − q−1)
q

16
, (35)

and we close this section summarizing our results.

Although we have considered only solutions in the homogeneous limit, this analysis

suggests that the partition function Z(λ1, . . . , λL) is determined by the following properties:

(i) Functional relation (24);

(ii) Polynomial structure:

Z(λ1, . . . , λL) =
Z̄(x1, . . . , xL)

L
∏

i=1

x
L−1
2

i

(36)

where Z̄(x1, . . . , xL) is a polynomial of degree L− 1 in each variable xi separately;

(iii) Asymptotic behavior Z̄(x1, . . . , xL) ∼
(q−q−1)L

2L2 [L]q2 ! (x1 . . . xL)
L−1 as xi →∞.

Here [L]q2 ! corresponds to the q-factorial function whose definition is given in the appendix

A.

10



5 Concluding remarks

In this paper we have obtained a functional equation for the partition function of the six

vertex model with domain wall boundary condition. The main ingredient in our derivation

is the Yang-Baxter algebra pointing out a novel branch of exploration for this algebra.

Although we have explicitly verified the validity of the functional equation (24) for

L = 1, 2, 3, 4, 5 , it would be still interesting to provide a proof of the Izergin determinant

representation [8]. It is also worthwhile to remark that functional equations for this partition

function have already been presented in the literature [21] when the anisotropy parameter

q is a root of unity. The Eq. (24) is valid for general values of the anisotropy parameter

q and certainly it would be interesting to investigate the connections between our equation

and the ones of [21].

Different equations and representations for this partition function have also being in-

vestigated in the literature [6, 9, 21, 22] usually obtained from Izergin determinant formula.

Our analysis do not rely on the determinant formula and we hope the Eq. (24) still allows

one to investigate alternative representations.

A careful examination of Eq. (24), or the particular case depicted in (30), suggests

that we have a relation between the partition function in the complete homogeneous limit

and the one in the partial homogeneous limit. This partial homogeneous limit has been

discussed in [23] associated to the proof of the refined alternating sign matrix conjecture,

and in [24] related to the six vertex model artic curve. The examination of (24) then suggests

that such an equation relating partial and complete homogeneous limit could be obtained

by considering λ1, λ2, . . . , λL+1 → λ while keeping λ0 fixed.

Within the framework of the Quantum Inverse Scattering Method, the study of par-

tition functions with domain wall boundary conditions shares many aspects with the com-

putation of scalar products and correlation functions [12]. Given this similarity we hope

to report on functional equations for scalar products and correlation functions in a future

publication.
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Appendix A: Polynomial structure and asymptotic be-

havior.

As it was shown in [1] and [14], the definitions (2), (5) and (9) allow us to study the

dependence of the operatorB(λ, {µk}) with the spectral parameters. In terms of the variables

xi = e2(λi−µi), it turns out that

B(λi, {µk}) =
1

x
L−1
2

i

[

f
(i)
L−1x

L−1
i + f

(i)
L−2x

L−2
i + · · ·+ f

(i)
1 xi + f

(i)
0

]

(A.1)

with L operator coefficients fα. The leading term fL−1 can be written down explicitly due

to the structure of (2) and (5), and it is given by

f
(i)
L−1 = 2−Lq

L−3
2 (q2 − 1) exp

[

(L− 1)ui −

L
∑

j=1

uj

]

L
∑

j=1

eujPj (A.2)

where the operators Pj are defined as

Pj =

j−1
⊗

l=1

K ⊗X− ⊗
L

⊗

l=j+1

K−1 . (A.3)

Together with X+ =





0 1

0 0



 the matrices

X− =





0 0

1 0



 and K =





q
1
2 0

0 q−
1
2



 (A.4)

generate the q-deformed su(2) algebra,

KX±K−1 = q±X±

[

X+, X−] =
K2 −K−2

q − q−1
. (A.5)

Looking to the definition (10) we can readly see that the dependence of Z(λ1, . . . , λL)

with the spectral parameters follows directly from the dependence of
L
∏

i=1

B(λi, {µk}) with

{λj} and {µk} since the vectors |0〉 and |0̄〉 do not depend on them. Thus considering the

definition (10) and (A.1) we can write

Z(λ1, . . . , λL) =
Z̄(x1, . . . , xL)

L
∏

i=1

x
L−1
2

i

(A.6)
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where Z̄(x1, . . . , xL) consists of a polynomial of degree L−1 in each variable xi independently.

In their turn the coefficients f
(i)
L−1 govern the asymptotic behavior of Z̄. In the limit

xi →∞ only the leading term coefficients contribute and from (A.1) and (A.6) we obtain

Z̄(x1, . . . , xL) ∼ 〈0̄|

L
∏

i=1

f
(i)
L−1 |0〉 (x1 . . . xL)

L−1 as xi →∞ . (A.7)

The product
L
∏

i=1

f
(i)
L−1 can be worked out using the following properties exhibited by the

operators Pj ,

PiPj = q2PjPi (i < j) (A.8)

P 2
i = 0 , (A.9)

which can be derived with the help of the relations (A.3)-(A.5).

Considering the property (A.9), we then have

L
∏

i=1

f
(i)
L−1 = 2−L2

q
L(L−3)

2 (q2 − 1)L
∑

{aj}
Pa1Pa2 . . . PaL (A.10)

where
∑

{aj}
denotes a summation over {aj} with each index aj ranging from 1 to L under

the constraint a1 6= a2 6= · · · 6= aL. The terms of
∑

{aj}
Pa1Pa2 . . . PaL can be ordered using the

relation (A.8) in order to achieve a common element. Thus we find

∑

{aj}
Pa1Pa2 . . . PaL = (1 + q−2)(1 + q−2 + q−4) . . . (1 + q−2 + q−4 + · · ·+ q−2(L−1))P1P2 . . . PL .

(A.11)

Now in order to derive an explicit expression for the leading term coefficient in (A.7), we only

need to compute 〈0̄|P1P2 . . . PL |0〉. This task can be directly performed since P1P2 . . . PL

consists of a tensor product of local operators. Using (12) and (A.4) we thus obtain

〈0̄|P1P2 . . . PL |0〉 = q
L(L−1)

2 . (A.12)

Gathering our results so far, in particular the relations (A.10), (A.11) and (A.12), we

are left with

〈0̄|
L
∏

i=1

f
(i)
L−1 |0〉 =

(q − q−1)L

2L2 [L!]q2 (A.13)

where [L!]q2 denotes the q-factorial function defined as

[L]q2 ! = 1(1 + q2)(1 + q2 + q4) . . . (1 + q2 + · · ·+ q2(L−1)) . (A.14)
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