Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Zeitschriftenartikel

DeepCEST: 9.4 T Chemical Exchange Saturation Transfer MRI contrast predicted from 3 T data - a proof of concept study

MPG-Autoren
/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216082

Schuppert,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216025

Herz,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zaiss, M., Deshmane, A., Schuppert, M., Herz, K., Ehses, P., Lindig, T., et al. (submitted). DeepCEST: 9.4 T Chemical Exchange Saturation Transfer MRI contrast predicted from 3 T data - a proof of concept study.


Zusammenfassung
Purpose: Separation of different CEST signals in the Z-spectrum is a challenge especially at low field strengths where amide, amine, and NOE peaks coalesce with each other or with the water peak. The purpose of this work is to investigate if the information in 3T spectra can be extracted by a deep learning approach trained by 9.4T human brain target data. Methods: Highly-spectrally-resolved Z-spectra from the same volunteer were acquired by 3D-snapshot CEST MRI at 3 T and 9.4 T with similar saturation schemes. The volume-registered 3 T Z-spectra-stack was then used as input data for a 3-layer deep neural network with the volume-registered 9.4 T fitted parameter stack as target data. The neural network was optimized and applied to training data, to unseen data from a different volunteer, and as well to a tumor patient data set. Results: A useful neural net architecture could be found and verified in healthy volunteers. The principle gray-/white matter contrast of the different CEST effects was predicted with only small deviations. The 9.4 T prediction was less noisy compared to the directly measured CEST maps, however at the cost of slightly lower tissue contrast. Application to a tumor patient measured at 3 T and 9.4 T revealed that tumorous tissue Z-spectra and corresponding hyper/hypo-intensities of different CEST effects can also be predicted. Conclusion: Deep learning might be a powerful tool for CEST data processing and deepCEST could bring the benefits and insights of the few ultra-high field sites to a broader clinical use. Vice versa deepCEST might help for determining which subjects are good candidates to measure additionally at UHF.