Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantitative assessment of xenon exchange kinetics with Cucurbit[6]uril in physiological saline.

MPG-Autoren
/persons/resource/persons220777

Korchak,  S.
Research Group of NMR Signal Enhancement, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2638021_Suppl.pdf
(Ergänzendes Material), 466KB

Zitation

Korchak, S., Riemer, T., Kilian, W., & Mitschang, L. (2018). Quantitative assessment of xenon exchange kinetics with Cucurbit[6]uril in physiological saline. ChemPhysChem, 19(15), 1859-1865. doi:10.1002/cphc.201800048.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-0112-8
Zusammenfassung
Cucurbit[6]uril and xenon form supramolecular complexes that are of great potential for biosensing by NMR. This host-guest system acts alike a signaler in sensors facilitating the ultrasensitive detection of biomarkers by saturation transfer of chemically exchanging, hyperpolarized Xe-129. Here, the exchange process is evaluated by NMR exchange spectroscopy utilizing the preparation of anti-parallel longitudinal magnetization with respect to free and host-bound xenon and the variation of xenon concentration. Evidence for dissociative as well as degenerate exchange mechanisms is revealed by a linear regression analysis of the determined exchange rates resulting in rate coefficients of 1131 +/- 11s(-1) (2390 +/- 70s(-1)) and 108500 +/- 4900M(-1)s(-1) (174200 +/- 13900M(-1)s(-1)), respectively, and an affinity constant of 289 +/- 8M(-1) (278 +/- 14M(-1)) in physiological saline at 298K (310K). The results elucidate the supramolecular exchange and underpin the high efficacy for biosensing of this host-guest system. The approach is generally applicable to enhanced host-xenon exchange dynamics, yet slow on the NMR timescale, for quantitative kinetics and biosensing analyses.