日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A

MPS-Authors
/persons/resource/persons194869

Zhuo,  Chun-Xiang
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)

[378]SI1.pdf
(付録資料), 10MB

[378]SI2.cif
(付録資料), 9KB

引用

Zhuo, C.-X., & Fürstner, A. (2018). Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A. Journal of the American Chemical Society, 140(33), 10514-10523. doi:10.1021/jacs.8b05094.


引用: https://hdl.handle.net/21.11116/0000-0002-05A0-3
要旨
The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even though the ubiquitous eukaryotic initiation factor 4A (eIF4A) constitutes its primary biological target. In addition, 1 had also been identified as a possible lead in the quest for medication against cachexia, an often lethal muscle wasting syndrome affecting many immunocompromised or cancer patients. The short supply of these macrodiolides, however, rendered a more detailed biological assessment difficult. Therefore, a new synthetic approach to 1 and 2 has been devised, which centers on an unorthodox strategy for the formation of the highly isomerization-prone but essential Z,E-configured dienoate substructure embedded into the macrocyclic core. This motif was encoded in the form of a 2-pyrone ring and unveiled only immediately before macrocyclization by an unconventional iron-catalyzed ring opening/cross-coupling reaction, in which the enol ester entity of the pyrone gains the role of a leaving group. Since the required precursor was readily available by gold catalysis, this strategy rendered the overall sequence short, robust, and scalable. A surprisingly easy protecting group management together with a much improved end game for the formation of the trienyl side chain via a modern Stille coupling protocol also helped to make the chosen route practical. Change of a single building block allowed the synthesis to be redirected from the natural lead compound 1 toward its almost equipotent analogue 2. Isolation and reactivity profiling of pyrone tricarbonyliron complexes provide mechanistic information as well as insights into the likely origins of the observed chemoselectivity.