Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure Determination, Conformational Flexibility, Internal Dynamics, and Chiral Analysis of Pulegone and Its Complex with Water

MPG-Autoren
/persons/resource/persons146333

Krin,  A.
Deutsches Elektronen-Synchrotron;
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Christian-Albrechts-Universität zu Kiel, Institute of Physical Chemistry;

/persons/resource/persons188136

Pérez,  C.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22077

Schnell,  M.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krin, A., Pérez, C., Pinacho, P., Quesada‐Moreno, M. M., López‐González, J. J., Avilés‐Moreno, J. R., et al. (2018). Structure Determination, Conformational Flexibility, Internal Dynamics, and Chiral Analysis of Pulegone and Its Complex with Water. Chemistry – A European Journal, 24(3), 721-729. doi:10.1002/chem.201704644.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-F59B-C
Zusammenfassung
In the current work we present a detailed analysis of the chiral molecule pulegone, which is a constituent of essential oils, using broadband rotational spectroscopy. Two conformers are observed under the cold conditions of a molecular jet. We report an accurate experimentally determined structure for the lowest energy conformer. For both conformers, a characteristic splitting pattern is observed in the spectrum, resulting from the internal rotation of the two non‐equivalent methyl groups situated in the isopropylidene side chain. The determined energy barriers are 1.961911(46) kJ mol−1 and 6.3617(12) kJ mol−1 for one conformer, and 1.96094(74) kJ mol−1 and 6.705(44) kJ mol−1 for the other one. Moreover, a cluster of the lowest energy conformer with one water molecule is reported. The water molecule locks one of the methyl groups by means of a hydrogen bond and some secondary interactions, so that we only observe internal rotation splittings from the other methyl group with an internal rotation barrier of 2.01013(38) kJ mol−1. Additionally, the chirality‐sensitive microwave three‐wave mixing technique is applied for the differentiation between the enantiomers, which can become of further use for the analysis of essential oils.