Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Investigating Quantum Electronic or Vibronic Coherences via Energy Migration Dynamics in Light-Harvesting Complex II

MPG-Autoren
/persons/resource/persons136056

Stevens,  A.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136054

Maneshi,  S.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136034

Prokhorenko,  V.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136024

Miller,  R. J. D.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stevens, A., Maneshi, S., Chen, L., Ernst, O. P., Prokhorenko, V., & Miller, R. J. D. (2016). Investigating Quantum Electronic or Vibronic Coherences via Energy Migration Dynamics in Light-Harvesting Complex II. In International Conference on Ultrafast Phenomena. Washington, DC, United States: OSA Technical Digest (online) (Optical Society of America, 2016). doi:10.1364/UP.2016.UTu4A.6.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-EFB8-3
Zusammenfassung
The possibility of quantum electronic coherence in photosynthetic complexes is a hotly-debated topic. Our two-dimensional spectroscopic results at physiologically-relevant temperatures attribute these commonly-seen oscillations to vibrational, instead of excitonic, origins. Expanding our laser excitation wavelength into the vibronic shoulder of the complex should provide the smoking gun for the vibrational nature of the oscillations.