English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence

MPS-Authors
/persons/resource/persons195578

Takashima,  Atsuko
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons122

McQueen,  James M.
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Research Associates, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Francisco_etal_2018.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Francisco, A. A., Takashima, A., McQueen, J. M., Van den Bunt, M., Jesse, A., & Groen, M. A. (2018). Adult dyslexic readers benefit less from visual input during audiovisual speech processing: fMRI evidence. Neuropsychologia, 117, 454-471. doi:10.1016/j.neuropsychologia.2018.07.009.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E84E-3
Abstract
The aim of the present fMRI study was to investigate whether typical and dyslexic adult readers differed in the neural correlates of audiovisual speech processing. We tested for Blood Oxygen-Level Dependent (BOLD) activity differences between these two groups in a 1-back task, as they processed written (word, illegal consonant strings) and spoken (auditory, visual and audiovisual) stimuli. When processing written stimuli, dyslexic readers showed reduced activity in the supramarginal gyrus, a region suggested to play an important role in phonological processing, but only when they processed strings of consonants, not when they read words. During the speech perception tasks, dyslexic readers were only slower than typical readers in their behavioral responses in the visual speech condition. Additionally, dyslexic readers presented reduced neural activation in the auditory, the visual, and the audiovisual speech conditions. The groups also differed in terms of superadditivity, with dyslexic readers showing decreased neural activation in the regions of interest. An additional analysis focusing on vision-related processing during the audiovisual condition showed diminished activation for the dyslexic readers in a fusiform gyrus cluster. Our results thus suggest that there are differences in audiovisual speech processing between dyslexic and normal readers. These differences might be explained by difficulties in processing the unisensory components of audiovisual speech, more specifically, dyslexic readers may benefit less from visual information during audiovisual speech processing than typical readers. Given that visual speech processing supports the development of phonological skills fundamental in reading, differences in processing of visual speech could contribute to differences in reading ability between typical and dyslexic readers.