English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Calculating free energies of point defects from ab initio

MPS-Authors
/persons/resource/persons213002

Zhang,  Xi
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125158

Grabowski,  Blazej
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, X., Grabowski, B., Hickel, T., & Neugebauer, J. (2018). Calculating free energies of point defects from ab initio. Computational Materials Science, 148, 249-259. doi:10.1016/j.commatsci.2018.02.042.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E760-E
Abstract
The formation and lifetime of point defects is governed by an interplay of kinetics and thermodynamic stability. To evaluate the stability under process conditions, empirical potentials and ab initio calculations at T=0K are often not sufficient. Therefore, various concepts to determine the full temperature dependence of the free energy of point defects with ab initio accuracy are reviewed. Examples for the importance of accurately describing defect properties include the stabilization of vacancies by impurities and the non-Arrhenius behaviour of vacancy formation energies due to anharmonic lattice vibrations. © 2018