English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men

MPS-Authors
/persons/resource/persons93189

Grinevich,  Valery
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sivukhina, E. V., Dolzhikov, A. A., Morozov, I. E., Jirikowski, G. F., & Grinevich, V. (2006). Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men. Hormone and metabolic research, 38(6), 382-390. doi:10.1055/s-2006-944522.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E566-A
Abstract
Although numerous data showing severe morphological impairment of magnocellular and parvocellular hypothalamic neurons due to chronic alcoholic consumption have been gathered from animal experiments, only one study (Harding et al., 1996) was performed on POST MORTEM human brain. This study showed a reduction in the number of vasopressin (VP)-immunoreactive neurons in the supraoptic (SON) and paraventricular (PVN) nuclei, but did not provide any data regarding the effect of chronic alcohol intake on human parvocellular neurons. In order to assess whether the changes observed in the animal model also occur in humans and provide a structural basis for the results of clinical tests, we performed immunohistochemical and morphometric analysis of magnocellular (VP and oxytocin, OT) and parvocellular (corticotropin-releasing hormone, CRH) neurons in post-mortem brains of patients afflicted with chronic alcoholic disease. We analyzed 26-male alcoholics and 22 age-matched controls divided into two age groups--"young" (< 40 yr) and "old" (> 40 yr). Hypothalamic sections were stained for OT, VP, and CRH. The analysis revealed: 1) decrease in VP-immunoreactivity in the SON and PVN as well as OT-immunoreactivity in the SON in alcoholic patients; 2) increase in OT-immunoreactivity in the PVN; 3) increase in CRH-immunoreactivity in parvocellular neurons in the PVN. Furthermore, the proportion of cells containing CRH and VP was increased in alcoholics. These findings indicate that chronic alcohol consumption does indeed impair the morphology of magnocellular neurons. The enhancement of CRH-immunoreactivity and increased co-production of CRH and VP in parvocellular neurons may be due to a decline in glucocorticoid production, implied by the hypoplasic impairment of adrenal cortex we observed in alcoholics during the course of this study.