Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light

MPG-Autoren
/persons/resource/persons224567

Graf,  Jasmin
Viola-Kusminskiy Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201154

Pfeifer,  Hannes
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201125

Marquardt,  Florian
Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Theoretische Physik;
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons220656

Viola-Kusminskiy,  Silvia
Viola-Kusminskiy Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1806.06727.pdf
(Preprint), 6MB

Ergänzendes Material (frei zugänglich)

2018_Graf_Cavity_Optomagnonics.png
(Ergänzendes Material), 29KB

Zitation

Graf, J., Pfeifer, H., Marquardt, F., & Viola-Kusminskiy, S. (submitted). Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-DF0F-5
Zusammenfassung
Optomagnonic systems, where light couples coherently to collective excitations in magnetically ordered solids, are currently of high interest due to their potential for quantum information processing platforms at the nanoscale. Efforts so far, both at the experimental and theoretical level, have focused on systems with a homogeneous magnetic background. A unique feature in optomagnonics is however the possibility of coupling light to spin excitations on top of magnetic textures. We propose a cavity-optomagnonic system with a non homogeneous magnetic ground state, namely a vortex in a magnetic microdisk. In particular we study the coupling between optical whispering gallery modes to magnon modes localized at the vortex. We show that the optomagnonic coupling has a rich spatial structure and that it can be tuned by an externally applied magnetic field. Our results predict cooperativities at maximum photon density of the order of C≈10−2 by proper engineering of these structures.