Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Relations between forest management, stand structure and productivity across different types of Central European forests

MPG-Autoren
/persons/resource/persons62549

Schulze,  Ernst Detlef
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schall, P., Schulze, E. D., Fischer, M., Ayasse, M., & Ammer, C. (2018). Relations between forest management, stand structure and productivity across different types of Central European forests. Basic and Applied Ecology. doi:10.1016/j.baae.2018.02.007.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-DDAD-4
Zusammenfassung
In the past 30 years, many stand structural attributes (SSAs) have been suggested and structural indices have been developed to describe the complex structure of forests. Most studies, however, have explored the potential and limits of structural measures to quantify forest structures by applying multiple measures to one stand or few measures to several stands. However, the interdependencies of multiple structural attributes across many stands of different forest management types and developmental stages have not yet been explored. Using 20 structural attributes and 124 completely inventoried 1 ha sized stands we tested to what extent structural characteristics reflect different stand types and management intensities, and how these characteristics change over time. We found that single SSAs do not show the clear gradients that they were intended to reflect, suggesting that stand structure should be described by multiple structural attributes, and that these should represent different structural aspects (including vertical, and horizontal heterogeneity, density, and diversity). A principal component analysis showed that combining several SSAs, allowed us to distinguish between stand types. The structure of mature stands remained rather constant over the observed period of about 6 years, while that of young stands changed more rapidly due to ingrowth and mortality. The older the stands, the less the large trees contributed to stand growth relative to their size. We conclude that multiple stand structural attributes are needed to characterise stand types, management effects and to explain stand productivity.