Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Design of an ion beam extraction optics and analysis of the molecular composition of an ion beam in an electrostatic storage ring

MPG-Autoren
/persons/resource/persons224524

Schmidt,  Viviane Charlotte
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BA_Viviane_Schmidt.pdf
(beliebiger Volltext), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schmidt, V. C. (2018). Design of an ion beam extraction optics and analysis of the molecular composition of an ion beam in an electrostatic storage ring. Bachelor Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-DC08-F
Zusammenfassung
New research opportunities are available in form of cold molecular beams stored in the electrostatic Cryogenic Storage Ring (CSR) at the Max-Planck-Institut für Kernphysik in Heidelberg. To expand the range of available ion species, a 5 keV ion transfer beamline is currently under construction to connect a variety of sources to the injection beamline of the CSR. Versatile ion beam extraction optics were developed during this thesis, which can be applied to sources producing low and high emittance beams alike. To effciently experiment even with beams of intensities below the detection threshold of the diagnostic systems of the CSR, two alternative procedures to determine the revolution frequency and consequentially the mass of the stored ions are presented. Due to the insufficient mass resolution of the bending magnets in the injection beamline, a method of mass verification is necessary for heavy particles. The observation of an ion bunch in the ring and delayed electron emission after laser excitation are successfully applied for this purpose. Furthermore, an analysis of the molecular composition of the beam is performed using mass spectra of the source output and the charged fragments of the beam. In addition, they also proof effective to identify non-isobaric and isobaric contaminations, respectively.