English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A model-based comparison of extreme winds in the Arctic and around Greenland

MPS-Authors
/persons/resource/persons220055

Gutjahr,  Oliver
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gutjahr, O., & Heinemann, G. (in press). A model-based comparison of extreme winds in the Arctic and around Greenland. International Journal of Climatology, early view, available online. doi:10.1002/joc.5729.


Cite as: https://hdl.handle.net/21.11116/0000-0001-D4D0-4
Abstract
This paper compares extreme value statistics of daily maximum 10 m wind speed in winter simulated by the regional climate model COSMO‐CLM at a horizontal resolution of 15 km (C15) with the reanalyses ERA‐Interim and Arctic System reanalysis (ASR version 1 and 2) and with a satellite data set (CCMPv2). Our C15 simulation (1979/1980–2015/2016, November–April) is thereby the longest high‐resolution simulation available for the Arctic. The results show that the extreme wind speeds tend to increase over the ocean with increasing the horizontal model resolution. A horizontal resolution of ≤15 km is required to sufficiently capture all extreme wind characteristics, in particular for the tip jets and barrier winds over the Irminger Sea and in the Denmark Strait, and for the low‐level jets in the Nares Strait. Of almost equal importance are physical parameterizations of surface fluxes and of turbulence. Capturing extreme wind characteristics has a direct effect on climate relevant air–ice–ocean interactions, such as triggering open‐ocean deep convection, polynya dynamics, or on the sea ice and freshwater balance of the Arctic.