English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation

MPS-Authors
/persons/resource/persons224050

Boonsanay,  Verawan
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224108

Zhang,  Ting
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224056

Georgieva,  Angelina
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224394

Kostin,  Sawa
Electron Microscopy, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224080

Qi,  Hui
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224106

Yuan,  Xuejun
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224110

Zhou,  Yonggang
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224052

Braun,  Thomas
Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boonsanay, V., Zhang, T., Georgieva, A., Kostin, S., Qi, H., Yuan, X., et al. (2016). Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation. CELL STEM CELL, 18(2), 229-242. doi:10.1016/j.stem.2015.11.002.


Cite as: https://hdl.handle.net/21.11116/0000-0001-BFDD-0
Abstract
Skeletal muscle stem cells (MuSCs) are required for regeneration of adult muscle following injury, a response that demands activation of mainly quiescent MuSCs. Despite the need for dynamic regulation of MuSC quiescence, relatively little is known about the determinants of this property. Here, we show that Suv4-20h1, an H4K20 dimethyltransferase, controls MuSC quiescence by promoting formation of facultative heterochromatin (fHC). Deletion of Suv4-20h1 reduces fHC and induces transcriptional activation and repositioning of the MyoD locus away from the heterochromatic nuclear periphery. These effects promote MuSC activation, resulting in stem cell depletion and impaired long-term muscle regeneration. Genetic reduction of MyoD expression rescues fHC formation and lost MuSC quiescence, restoring muscle regeneration capacity in Suv4-20h1 mutants. Together, these findings reveal that Suv4-20h1 actively regulates MuSC quiescence via fHC formation and control of the MyoD locus, thereby guarding and preserving the stem cell pool over a lifetime.