Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Real-time 3D visualization of cellular rearrangements during cardiac valve formation

MPG-Autoren
/persons/resource/persons224266

Pestel,  Jenny
Developmental Genetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224268

Ramadass,  Radhan
Developmental Genetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224233

Gauvrit,  Sebastien
Developmental Genetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224237

Helker,  Christian S.M.
Developmental Genetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224278

Stainier,  Didier Y.R.
Developmental Genetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pestel, J., Ramadass, R., Gauvrit, S., Helker, C. S., Herzog, W., & Stainier, D. Y. (2016). Real-time 3D visualization of cellular rearrangements during cardiac valve formation. DEVELOPMENT, 143(12), 2217-2227. doi:10.1242/dev.133272.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-C138-6
Zusammenfassung
During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/beta-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process.