English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes

MPS-Authors
/persons/resource/persons224185

Offermanns,  Stefan
Pharmacology, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sauve, M., Hui, S. K., Dinh, D. D., Foltz, W. D., Momen, A., Nedospasov, S. A., et al. (2016). Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. DIABETES, 65(7), 1916-1928. doi:10.2337/db15-1450.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C13E-0
Abstract
Diabetes strongly associates with microvascular complications that ultimately promote multiorgan failure. Altered myogenic responsiveness compromises tissue perfusion, aggravates hypertension, and sets the stage for later permanent structural changes to the microcirculation. We demonstrate that skeletal muscle resistance arteries isolated from patients with diabetes have augmented myogenic tone, despite reasonable blood glucose control. To understand the mechanisms, we titrated a standard diabetes mouse model (high-fat diet plus streptozotocin [HFD/STZ]) to induce a mild increase in blood glucose levels. HFD/STZ treatment induced a progressive myogenic tone augmentation in mesenteric and olfactory cerebral arteries; neither HFD nor STZ alone had an effect on blood glucose or resistance artery myogenic tone. Using gene deletion models that eliminate tumor necrosis factor (TNF) or sphingosine kinase 1, we demonstrate that vascular smooth muscle cell TNF drives the elevation of myogenic tone via enhanced sphingosine-1-phosphate (S1P) signaling. Therapeutically antagonizing TNF (etanercept) or S1P (JTE013) signaling corrects this defect. Our investigation concludes that vascular smooth muscle cell TNF augments resistance artery myogenic vasoconstriction in a diabetes model that induces a small elevation of blood glucose. Our data demonstrate that microvascular reactivity is an early disease marker and advocate establishing therapies that strategically target the microcirculation.