English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The phenyl vinyl ether–methanol complex: a model system for quantum chemistry benchmarking

MPS-Authors
/persons/resource/persons196433

Fatima,  Mariyam
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen Synchrotron (DESY);

/persons/resource/persons188136

Pérez,  C.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen Synchrotron (DESY);

/persons/resource/persons22077

Schnell,  M.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen Synchrotron (DESY);
Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1860-5397-14-140.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bernhard, D., Dietrich, F., Fatima, M., Pérez, C., Gottschalk, H. C., Wuttke, A., et al. (2018). The phenyl vinyl ether–methanol complex: a model system for quantum chemistry benchmarking. Beilstein Journal of Organic Chemistry, 14, 1642-1654. doi:10.3762/bjoc.14.140.


Cite as: https://hdl.handle.net/21.11116/0000-0001-BCBF-5
Abstract
The structure of the isolated aggregate of phenyl vinyl ether and methanol is studied by combining a multi-spectroscopic approach and quantum-chemical calculations in order to investigate the delicate interplay of noncovalent interactions. The complementary results of vibrational and rotational spectroscopy applied in molecular beam experiments reveal the preference of a hydrogen bond of the methanol towards the ether oxygen (OH∙∙∙O) over the π-docking motifs via the phenyl and vinyl moieties, with an additional less populated OH∙∙∙P(phenyl)-bound isomer detected only by microwave spectroscopy. The correct prediction of the energetic order of the isomers using quantum-chemical calculations turns out to be challenging and succeeds with a sophisticated local coupled cluster method. The latter also yields a quantification as well as a visualization of London dispersion, which prove to be valuable tools for understanding the role of dispersion on the docking preferences. Beyond the structural analysis of the electronic ground state (S0), the electronically excited (S1) state is analyzed, in which a destabilization of the OH∙∙∙O structure compared to the S0 state is observed experimentally and theoretically.