日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2

MPS-Authors
/persons/resource/persons135901

Huang,  Liangfeng
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Huang, L., Gong, P., & Zeng, Z. (2014). Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2. Physical Review B, 90(4):. doi:10.1103/PhysRevB.90.045409.


引用: https://hdl.handle.net/21.11116/0000-0001-C136-8
要旨
Using first-principles simulation, the correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2 is established. The laminar structure results in the low-dimension ZA mode with a parabolic dispersion and negative Grüneisen constants (γ), while the nonorthogonal covalent Mo-S bonds (or intralayer thickness) result in the interatom and interdirection vibrational hybridizations, which tend to increase γ. There is a negative-positive crossover in thermal expansion coefficient at 20 K, because of the competition between the modes with negative and positive γ. Although the phononic activation at finite temperatures has a stiffening effect on the bulk modulus, the dominant effect from thermal expansion softens the lattice upon heating. The intralayer thickness results in the similarity between the thermal expansions of SL and bulk MoS2. Our numerical results explicitly support that the experimentally measured thermal shifts of the Raman modes are dominated by multiphonon scattering, but not thermal expansion. © 2014 American Physical Society.