Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Magnetic exchange interactions and critical temperature of the nanolaminate Mn2GaC from first-principles supercell methods

MPG-Autoren
/persons/resource/persons195051

Alling,  Björn
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, Linköping, Sweden;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thore, A., Dahlqvist, M., Alling, B., & Rosén, J. A. (2016). Magnetic exchange interactions and critical temperature of the nanolaminate Mn2GaC from first-principles supercell methods. Physical Review B, 93(5): 054432. doi:10.1103/PhysRevB.93.054432.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-B7EC-7
Zusammenfassung
In this work, we employ and critically evaluate a first-principles approach based on supercell calculations for predicting the magnetic critical order-disorder temperature Tc. As a model material we use the recently discovered nanolaminate Mn2GaC. First, we derive the exchange interaction parameters Jij between pairs of Mn atoms on sites i and j of the bilinear Heisenberg Hamiltonian using the novel magnetic direct cluster averaging method (MDCA), and then compare the J′s from the MDCA calculations to the same parameters calculated using the Connolly-Williams method. We show that the two methods yield closely matching results, but observe that the MDCA method is computationally less effective when applied to highly ordered phases such as Mn2GaC. Secondly, Monte Carlo simulations are used to derive the magnetic energy, specific heat, and Tc. For Mn2GaC, we find Tc=660K. The uncertainty in the calculated Tc caused by possible uncertainties in the J′s is discussed and exemplified in our case by an analysis of the impact of the statistical uncertainties of the MDCA-derived J′s, resulting in a Tc distribution with a standard deviation of 133 K. © 2016 American Physical Society.