Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Itinerant quantum multicriticality of two-dimensional Dirac fermions

MPG-Autoren
/persons/resource/persons219999

Roy,  Bitan
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roy, B., Goswami, P., & Juricic, V. (2018). Itinerant quantum multicriticality of two-dimensional Dirac fermions. Physical Review B, 97(20): 205117. doi:10.1103/PhysRevB.97.205117.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-BA11-A
Zusammenfassung
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d = 2) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S-1) and O(S-2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the epsilon = (3 - d) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S-1 + S-2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparisonwith the lower symmetric semimetal-insulator quantum critical points, possessing either O(S-1) or O(S-2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.