Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Light-Matter Interactions via the Exact Factorization Approach

MPG-Autoren
/persons/resource/persons207335

Hoffmann,  N.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics;
Department of Physics and Astronomy, Hunter College of the City University of New York;

/persons/resource/persons21304

Appel,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1803.02020.pdf
(Preprint), 746KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hoffmann, N., Appel, H., Rubio, A., & Maitra, N. T. (2018). Light-Matter Interactions via the Exact Factorization Approach.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-B01F-6
Zusammenfassung
The exact factorization approach, originally developed for electron-nuclear dynamics, is extended to light-matter interactions within the dipole approximation. This allows for a Schrodinger equation for the photonic wavefunction, in which the potential contains exactly the effects on the photon field of its coupling to matter. We illustrate the formalism and potential for a two-level system representing the matter, coupled to an infinite number of photon modes in the Wigner-Weisskopf approximation, as well as a single mode with various coupling strengths. Significant differences are found with the potential used in conventional approaches, especially for strong-couplings. We discuss how our exact factorization approach for light-matter interactions can be used as a guideline to develop semiclassical trajectory methods for efficient simulations of light-matter dynamics.