日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Uncertainties in estimates of mortality attributable to ambient PM2.5 in Europe

MPS-Authors
/persons/resource/persons101196

Pozzer,  Andrea
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kushta, J., Pozzer, A., & Lelieveld, J. (2018). Uncertainties in estimates of mortality attributable to ambient PM2.5 in Europe. Environmental Research Letters, 13(6):. doi:10.1088/1748-9326/aabf29.


引用: https://hdl.handle.net/21.11116/0000-0001-A9E2-1
要旨
The assessment of health impacts associated with airborne particulate matter smaller than 2.5 μm in diameter (PM2.5) relies on aerosol concentrations derived either from monitoring networks, satellite observations, numerical models, or a combination thereof. When global chemistry-transport models are used for estimating PM2.5, their relatively coarse resolution has been implied to lead to underestimation of health impacts in densely populated and industrialized areas. In this study the role of spatial resolution and of vertical layering of a regional air quality model, used to compute PM2.5 impacts on public health and mortality, is investigated. We utilize grid spacings of 100 km and 20 km to calculate annual mean PM2.5 concentrations over Europe, which are in turn applied to the estimation of premature mortality by cardiovascular and respiratory diseases. Using model results at a 100 km grid resolution yields about 535 000 annual premature deaths over the extended European domain (242 000 within the EU-28), while numbers approximately 2.4% higher are derived by using the 20 km resolution. Using the surface (i.e. lowest) layer of the model for PM2.5 yields about 0.6% higher mortality rates compared with PM2.5 averaged over the first 200 m above ground. Further, the calculation of relative risks (RR) from PM2.5, using 0.1 μg m−3 size resolution bins compared to the commonly used 1 μg m−3, is associated with ±0.8% uncertainty in estimated deaths. We conclude that model uncertainties contribute a small part of the overall uncertainty expressed by the 95% confidence intervals, which are of the order of ±30%, mostly related to the RR calculations based on epidemiological data.