Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method

MPG-Autoren
/persons/resource/persons188165

Domínguez García,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kranz, J. J., Elstner, M., Aradi, B., Frauenheim, T., Lutsker, V., Domínguez García, A., et al. (2017). Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method. Journal of Chemical Theory and Computation, 13(4), 1737-1747. doi:10.1021/acs.jctc.6b01243.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-A47C-B
Zusammenfassung
We present a consistent linear response formulation of the density functional based tight-binding method for long-range corrected exchange-correlation functionals (LC-DFTB). Besides a detailed account of derivation and implementation of the method, we also test the new scheme on a variety of systems considered to be problematic for conventional local/semilocal time-dependent density functional theory (TD-DFT). To this class belong the optical properties of polyacenes and nucleobases, as well as charge transfer excited states in molecular dimers. We find that the approximate LC-DFTB method exhibits the same general trends and similar accuracy as range-separated DFT methods at significantly reduced computational cost. The scheme should be especially useful in the determination of the electronic excited states of very large molecules, for which conventional TD-DFT is supposed to fail due to a multitude of artificial low energy states.