English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural determination and population transfer of 4-nitroanisole by broadband microwave spectroscopy and tailored microwave pulses

MPS-Authors
/persons/resource/persons140383

Graneek,  J. B.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen-Synchrotron DESY;

/persons/resource/persons188136

Pérez,  C.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen-Synchrotron DESY;

/persons/resource/persons22077

Schnell,  M.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen-Synchrotron DESY;
Christian-Albrechts-Universität zu Kiel;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1.4991902.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Graneek, J. B., Pérez, C., & Schnell, M. (2017). Structural determination and population transfer of 4-nitroanisole by broadband microwave spectroscopy and tailored microwave pulses. The Journal of Chemical Physics, 147(15): 154306. doi:10.1063/1.4991902.


Cite as: https://hdl.handle.net/21.11116/0000-0001-9E6E-3
Abstract
The rotational spectrum of 4-nitroanisole was recorded via chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 2-8 GHz. The spectra of the parent molecule and all of its 13C-, 15N-, and 18O-monosubstituted species in their natural abundance were assigned, and the molecular structure was determined using Kraitchman’s equations as well as a least-square fitting approach. 4-nitroanisole has a large dipole moment of 6.15 D along the inertial a-axis and a smaller dipole moment of 0.78 D along the b-axis. The large dipole moment component makes this molecule a potential candidate for deceleration experiments using static electric fields or electromagnetic radiation. Using tailored microwave pulses, we investigate the possibility of transferring population between the rotational states of 4-nitroanisole. Such a technique could be applied to selectively increase the population for specific rotational states of interest, which are then accessible for further, more advanced experiments, such as deceleration.