Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cold Snapshot of a Molecular Rotary Motor Captured by High‐Resolution Rotational Spectroscopy

MPG-Autoren
/persons/resource/persons188933

Domingos,  S. R.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen-Synchrotron DESY;

/persons/resource/persons22077

Schnell,  M.
Structure and Dynamics of Cold and Controlled Molecules, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Deutsches Elektronen-Synchrotron DESY;
Christian-Albrechts-Universität zu Kiel Institute of Physical Chemistry;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

anie.201704221.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Domingos, S. R., Cnossen, A., Buma, W. J., Browne, W. R., Feringa, B. L., & Schnell, M. (2017). Cold Snapshot of a Molecular Rotary Motor Captured by High‐Resolution Rotational Spectroscopy. Angewandte Chemie International Edition, 56(37 SI), 11209-11212. doi:10.1002/anie.201704221.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-970B-9
Zusammenfassung
We present the first high‐resolution rotational spectrum of an artificial molecular rotary motor. By combining chirped‐pulse Fourier transform microwave spectroscopy and supersonic expansions, we captured the vibronic ground‐state conformation of a second‐generation motor based on chiral, overcrowded alkenes. The rotational constants were accurately determined by fitting more than 200 rotational transitions in the 2–4 GHz frequency range. Evidence for dissociation products allowed for the unambiguous identification and characterization of the isolated motor components. Experiment and complementary quantum‐chemical calculations provide accurate geometrical parameters for the C27H20 molecular motor, the largest molecule investigated by high‐resolution microwave spectroscopy to date.