Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection

MPG-Autoren
/persons/resource/persons213007

Wang,  Yong
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, D., Wang, Y., Yu, H., & Han, Q. (2018). A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection. International Journal of Heat and Mass Transfer, 123, 213-226. doi:10.1016/j.ijheatmasstransfer.2018.02.053.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-94F3-5
Zusammenfassung
A multi-relaxation-time (MRT) lattice Boltzmann (LB) based model is utilized to simulate the dendritic growth with melt convection in solidification of alloys. It models melt convection by the MRT-LB equation and solute transport by a conservation equation with a pseudo-potential function. The D2Q9 lattice vectors are proposed to describe interface advancement in the liquid-solid transition. Effects of undercoolings, interface curvature and preferred growth orientation are incorporated into the model implicitly. After model validation, dendritic growth under several conditions of pure diffusion and melt convection was numerically investigated, and the solidification entropies were proposed to quantitatively characterize the solidification system. The result shows that the growth behavior, microstructure formation and solute segregation are significantly influenced by melt convection. The solidification entropies reflecting complexity of the solidification system are useful to characterize dendritic growth and solute segregation. This work offers a potential solution for studies of microstructure evolution in solidification of alloys.