English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides

MPS-Authors
/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Department of Physics, Ruhr-University Bochum, 44780 Bochum, Germany;
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Masa, J., Andronescu, C., Antoni, H., Sinev, I., Seisel, S., Elumeeva, K., et al. (2018). Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides. ChemElectroChem, 5. doi:10.1002/celc.201800669.


Cite as: https://hdl.handle.net/21.11116/0000-0001-9583-2
Abstract
The modification of nickel with boron or phosphorus leads to significant enhancement of its electrocatalytic activity for the oxygen evolution reaction (OER). However, the precise role of the guest elements, B and P, in enhancing the OER of the host element (Ni) remains unclear. Herein, we present insight into the role of B and P in enhancing electrocatalysis of oxygen evolution by nickel borides and nickel phosphides. The apparent activation energy, Ea*, of electrocatalytic oxygen evolution on Ni2P was 78.4 kJ/mol, on Ni2B 65.4 kJ/mol, and on Ni nanoparticles 94.0 kJ/mol, thus revealing that both B and P affect the intrinsic activity of nickel. XPS data revealed shifts of −0.30 and 0.40 eV in the binding energy of the Ni 2p3/2 peak of Ni2B and Ni2P, respectively, with respect to that of pure Ni at 852.60 eV, thus indicating that B and P induce opposite electronic effects on the surface electronic structure of Ni. The origin of enhanced activity for oxygen evolution cannot, therefore, be attributed to such electronic modification or ligand effect. Severe changes induced on the nickel lattice, specifically, the Ni‐Ni atomic order and interatomic distances (strain effect), by the presence of the guest atoms seem to be the dominant factors responsible for enhanced activity of oxygen evolution in nickel borides and nickel phosphides.