Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials

MPG-Autoren
/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Department of Physics, Ruhr-University Bochum, 44780 Bochum, Germany;
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c8sc00491a.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Leonard, N., Ju, W., Sinev, I., Steinberg, J., Luo, F., Varela, A. S., et al. (2018). The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chemical Science, 22(9), 5064-5073. doi:10.1039/C8SC00491A.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-9517-D
Zusammenfassung
We report novel structure–activity relationships and explore the chemical state and structure of catalytically active sites under operando conditions during the electrochemical CO2 reduction reaction (CO2RR) catalyzed by a series of porous iron–nitrogen–carbon (FeNC) catalysts. The FeNC catalysts were synthesized from different nitrogen precursors and, as a result of this, exhibited quite distinct physical properties, such as BET surface areas and distinct chemical N-functionalities in varying ratios. The chemical diversity of the FeNC catalysts was harnessed to set up correlations between the catalytic CO2RR activity and their chemical nitrogen-functionalities, which provided a deeper understanding between catalyst chemistry and function. XPS measurements revealed a dominant role of porphyrin-like Fe–Nx motifs and pyridinic nitrogen species in catalyzing the overall reaction process. Operando EXAFS measurements revealed an unexpected change in the Fe oxidation state and associated coordination from Fe2+ to Fe1+. This redox change coincides with the onset of catalytic CH4 production around −0.9 VRHE. The ability of the solid state coordinative Fe1+–Nx moiety to form hydrocarbons from CO2 is remarkable, as it represents the solid-state analogue to molecular Fe1+ coordination compounds with the same catalytic capability under homogeneous catalytic environments. This finding highlights a conceptual bridge between heterogeneous and homogenous catalysis and contributes significantly to our fundamental understanding of the FeNC catalyst function in the CO2RR.