Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe4 Single Molecule Magnet

MPG-Autoren
/persons/resource/persons182904

Malavolti,  L.
Univ Florence, Dept Chem Ugo Schiff, I-50019 Sesto Fiorentino, Italy;
Univ Florence, INSTM Res Unit, I-50019 Sesto Fiorentino, Italy;
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lanzilotto, V., Malavolti, L., Ninova, S., Cimatti, I., Poggini, L., Cortigiani, B., et al. (2016). The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe4 Single Molecule Magnet. Chemistry of Materials, 28(21), 7693-7702. doi:10.1021/acs.chemmater.6b02696.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-8F4C-A
Zusammenfassung
Realization of well-controlled hybrid interfaces between solid surfaces and functional complex molecules can be hampered by the presence of contaminants originated by the fragmentation of fragile architectures based on the coordinative bond. Here, we present a morphological and spectroscopic analysis of submonolayer films obtained by sublimation of the [Fe-4(L)(2)(dpm)(6)] (Fe-4) single molecule magnet on different substrates. Though intact tetranuclear molecules can be transferred to surfaces, smaller molecular species are often codeposited. By comparison of substrates characterized by different reactivities, such as Au(111), Cu(100), and Cu2N, and employing a protocol of indirect exposure of the substrate, we infer that the observed fragments do not originate from the reaction of Fe-4 molecules with the surface but rather are produced during Fe-4 sublimation, which releases Fe(dpm)(3) as a very volatile compound. Fe(dpm)(3) undergoes substrate-dependent on-surface decomposition to final products that have been identified by combined STM, UPS, XPS, and DFT studies.