日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Quantum tunneling of thermal protons through pristine graphene

MPS-Authors
/persons/resource/persons183360

Zheng,  Limin
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons188985

Mortazavi,  Majid
Theory, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1605.06341.pdf
(プレプリント), 4MB

付随資料 (公開)
There is no public supplementary material available
引用

Poltavsky, I., Zheng, L., Mortazavi, M., & Tkatchenko, A. (2018). Quantum tunneling of thermal protons through pristine graphene. The Journal of Chemical Physics, 148(20):. doi:10.1063/1.5024317.


引用: https://hdl.handle.net/21.11116/0000-0001-8AC5-5
要旨
Engineering of atomically thin membranes for hydrogen isotope separation is an actual challenge which has a broad range of applications. Recent experiments [M. Lozada-Hidalgo et al., Science 351, 68 (2016)] unambiguously demonstrate an order-of-magnitude difference in permeabilities of graphene-based membranes to protons and deuterons at ambient conditions, making such materials promising for novel separation technologies. Here we demonstrate that the permeability mechanism in such systems changes from quantum tunneling for protons to quasi-classical transport for heavier isotopes. Quantum nuclear effects exhibit large temperature and mass dependence, modifying the Arrhenius activation energy and Arrhenius prefactor for protons by more than 0.5 eV and by seven orders of magnitude correspondingly. Our findings not only shed light on the separation process for hydrogen isotope ions passing through pristine graphene but also offer new insights for controlling ion transport mechanisms in nanostructured separation membranes by manipulating the shape of the barrier and transport process conditions.