English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

MRI-guided robotic arm (MgRA) drives optogenetic activation of the rat corpus callosum

MPS-Authors
/persons/resource/persons214924

Chen,  Y
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214931

Pais Roldan,  P
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214920

Chen,  X
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133486

Yu,  X
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Abstract)

https://www.ismrm.org/18/ToC.pdf
(Abstract)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chen, Y., Pais Roldan, P., Chen, X., & Yu, X. (2018). MRI-guided robotic arm (MgRA) drives optogenetic activation of the rat corpus callosum. In Joint Annual Meeting ISMRM-ESMRMB 2018.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7E35-7
Abstract
An MRI-compatible robotic arm was developed to provide a precise fiber positioning for optogenetic fMRI of the rat brain. Corpus callosum connects two hemispheres through a thin sheet of spreading fiber bundle with only a few hundred micron thickness in the brain. This work shows that MgRA can guide fiber optic to precisely target the callosal fiber bundles. The optogenetically driven callosal axonal fiber-mediated neural activity leads to strong antidromic activation in the hemisphere with callosal neurons expressing ChR2 by fMRI.