English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

32-Channel Combined Surface Loop / “Vertical” Loop Tight-Fit Array Provides for Full-Brain Coverage, High Transmit Performance, and SNR Improvement at 9.4T: an Alternative to Surface Loop / Dipole Antenna Combination

MPS-Authors
/persons/resource/persons133464

Avdievich,  N
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192635

Giapitzakis,  IA
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Abstract)

https://www.ismrm.org/18/ToC.pdf
(Abstract)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Avdievich, N., Giapitzakis, I., & Henning, A. (2018). 32-Channel Combined Surface Loop / “Vertical” Loop Tight-Fit Array Provides for Full-Brain Coverage, High Transmit Performance, and SNR Improvement at 9.4T: an Alternative to Surface Loop / Dipole Antenna Combination. In Joint Annual Meeting ISMRM-ESMRMB 2018.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7E27-7
Abstract
Tight-fit human head ultra-high field (UHF,>7T) transceiver (TxRx) surface loop phased arrays improve transmit (Tx)-efficiency in comparison to Tx-only arrays, which are larger to fit receive (Rx)-only arrays inside. A drawback of the TxRx-design is that the number of array elements is restricted by the number of available RF Tx-channels (commonly <16), which limits the Rx-performance. A new 32-element tight-fit human head array, which consists of 18 TxRx-loops and 14 Rx-only vertical loops, was constructed. The array provides for full-brain coverage, ~50 greater B , and ~30 greater SNR near the brain center as compared to common Tx-only/ Rx-only (ToRo) array.