English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Morphological characterization of HVC projection neurons in the zebra finch (Taeniopygia guttata)

MPS-Authors
/persons/resource/persons84944

Narayanan,  RT
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84931

Egger,  R
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Benezra, S., Narayanan, R., Egger, R., Oberlaender, M., & Long, M. (2018). Morphological characterization of HVC projection neurons in the zebra finch (Taeniopygia guttata). Journal of Comparative Neurology, 526(10), 1673-1689. doi:10.1002/cne.24437.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7CB5-8
Abstract
Singing behavior in the adult male zebra finch is dependent upon the activity of a cortical region known as HVC (proper name). The vast majority of HVC projection neurons send primary axons to either the downstream premotor nucleus RA (primary motor cortex) or Area X (basal ganglia), which play important roles in song production or song learning, respectively. In addition to these long‐range outputs, HVC neurons also send local axon collaterals throughout that nucleus. Despite their implications for a range of circuit models, these local processes have never been completely reconstructed. Here we use in vivo single‐neuron Neurobiotin fills to examine 40 projection neurons across 31 birds with somatic positions distributed across HVC. We show that HVC(RA) and HVC(X) neurons have categorically distinct dendritic fields. Additionally, these cell classes send axon collaterals that are either restricted to a small portion of HVC (“local neurons”) or broadly distributed throughout the entire nucleus (“broadcast neurons”). Overall, these processes within HVC offer a structural basis for significant local processing underlying behaviorally‐relevant population activity.