Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Black hole-neutron star mergers using a survey of finite-temperature equations of state

MPG-Autoren
/persons/resource/persons213835

Pfeiffer,  Harald
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1804.09823.pdf
(Preprint), 767KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Brege, W., Duez, M. D., Foucart, F., Deaton, M. B., Caro, J., Hemberger, D. A., et al. (in preparation). Black hole-neutron star mergers using a survey of finite-temperature equations of state.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-754C-7
Zusammenfassung
Each of the potential signals from a black hole-neutron star merger should contain an imprint of the neutron star equation of state: gravitational waves via its effect on tidal disruption, the kilonova via its effect on the ejecta, and the gamma ray burst via its effect on the remnant disk. These effects have been studied by numerical simulations and quantified by semi-analytic formulae. However, most of the simulations on which these formulae are based use equations of state without finite temperature and composition-dependent nuclear physics. In this paper, we simulate black hole-neutron star mergers varying both the neutron star mass and the equation of state, using three finite-temperature nuclear models of varying stiffness. Our simulations largely vindicate formulae for ejecta properties but do not find the expected dependence of disk mass on neutron star compaction. We track the early evolution of the accretion disk, largely driven by shocking and fallback inflow, and do find notable equation of state effects on the structure of this early-time, neutrino-bright disk.