Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution.

MPG-Autoren
/persons/resource/persons203341

Eilers,  Y.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons79571

Ta,  H.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons96528

Gwosch,  K.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons141819

Balzarotti,  F.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2596590.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)

2596590_Suppl.htm
(Ergänzendes Material), 222KB

Zitation

Eilers, Y., Ta, H., Gwosch, K., Balzarotti, F., & Hell, S. W. (2018). MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proceedings of the National Academy of Sciences of the United States of America, (in press). doi:10.1073/pnas.1801672115.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-6965-8
Zusammenfassung
Compared with localization schemes solely based on evaluating patterns of molecular emission, the recently introduced single-molecule localization concept called MINFLUX and the fluorescence nanoscopies derived from it require up to orders of magnitude fewer emissions to attain single-digit nanometer resolution. Here, we demonstrate that the lower number of required fluorescence photons enables MINFLUX to detect molecular movements of a few nanometers at a temporal sampling of well below 1 millisecond. Using fluorophores attached to thermally fluctuating DNA strands as model systems, we demonstrate that measurement times as short as 400 microseconds suffice to localize fluorescent molecules with ∼2-nm precision. Such performance is out of reach for popular camera-based localization by centroid calculation of emission diffraction patterns. Since theoretical limits have not been reached, our results show that emerging MINFLUX nanoscopy bears great potential for dissecting the motions of individual (macro)molecules at hitherto-unattained combinations of spatial and temporal resolution.