Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Computational Study of B(C6F5)3-Catalyzed Selective Deoxygenation of 1,2-Diols: Cyclic and Noncyclic Pathways

MPG-Autoren
/persons/resource/persons200127

Cheng,  Gui-Juan
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons188241

Drosos,  Nikolaos
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145542

Morandi,  Bill
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

cs7b04209_si_001.pdf
(Ergänzendes Material), 2MB

cs7b04209_si_002.xyz
(Ergänzendes Material), 127KB

Zitation

Cheng, G.-J., Drosos, N., Morandi, B., & Thiel, W. (2018). Computational Study of B(C6F5)3-Catalyzed Selective Deoxygenation of 1,2-Diols: Cyclic and Noncyclic Pathways. ACS Catalysis, 8(3), 1697-1702. doi:10.1021/acscatal.7b04209.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-695B-4
Zusammenfassung
The selective deoxygenation of polyols has emerged as an attractive approach to transform biomass-derived polyols into valuable building blocks. Herein, we present a theoretical study on the boron-catalyzed selective deoxygenation of terminal 1,2-diols. The computational results explain the different product distributions obtained with different silanes and unveil the critical role of the cyclic siloxane intermediate. Compared to noncyclic pathways, the cyclic pathway facilitates the initial deoxygenation process because the cyclic structure minimizes the steric repulsions between the reagents. It avoids overreduction because the generated bulky disiloxane moiety hinders the second deoxygenation.