日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution

MPS-Authors
/persons/resource/persons15210

Hell,  Stefan W.
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

External Resource

http://www.pnas.org/content/early/2018/05/22/1801672115.full.pdf
(全文テキスト(全般))

https://doi.org/10.1073/pnas.1801672115
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F., & Hell, S. W. (2018). MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proceedings of the National Academy of Sciences of the United States of America, 115(24), 6117-6122. doi:10.1073/pnas.1801672115.


引用: https://hdl.handle.net/21.11116/0000-0001-6468-A
要旨
Compared with localization schemes solely based on evaluating patterns of molecular emission, the recently introduced single-molecule localization concept called MINFLUX and the fluorescence nanoscopies derived from it require up to orders of magnitude fewer emissions to attain single-digit nanometer resolution. Here, we demonstrate that the lower number of required fluorescence photons enables MINFLUX to detect molecular movements of a few nanometers at a temporal sampling of well below 1 millisecond. Using fluorophores attached to thermally fluctuating DNA strands as model systems, we demonstrate that measurement times as short as 400 microseconds suffice to localize fluorescent molecules with ∼2-nm precision. Such performance is out of reach for popular camera-based localization by centroid calculation of emission diffraction patterns. Since theoretical limits have not been reached, our results show that emerging MINFLUX nanoscopy bears great potential for dissecting the motions of individual (macro)molecules at hitherto-unattained combinations of spatial and temporal resolution.